

Mastering Proxmox
Third Edition

Build virtualized environments using the Proxmox VE
hypervisor

Wasim Ahmed

BIRMINGHAM - MUMBAI

Mastering Proxmox

Third Edition
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2014

Second edition: May 2016

Third edition: November 2017

Production reference: 1141117

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78839-760-5

www.packtpub.com

http://www.packtpub.com

Credits

Author
Wasim Ahmed

Copy Editors
Safis Editing
Madhusudan Uchil

Reviewers
Nicolas Ledez
Jorge Moratilla Porras

Project Coordinator
Virginia Dias

Commissioning Editor
Vijin Boricha

Proofreader
Safis Editing

Acquisition Editor
Rahul Nair

Indexer
Francy Puthiry

Content Development Editor
Sharon Raj

Graphics
Kirk D'Penha

Technical Editors
Vishal Kamal Mewada
Khushbu Sutar

Production Coordinator
Nilesh Mohite

About the Author
Wasim Ahmed, born in Bangladesh and now a citizen of Canada, is a veteran of the IT
world. He first came into close contact with computers in 1992 and never looked back.
Wasim has a deep understanding of networks, virtualization, big data storage, and network
security.

By profession, Wasim is the CEO of a global IT support and cloud service provider based in
Calgary, Alberta. He serves many companies and organizations through his company on a
daily basis. Wasim's strength comes from his experience, which comes from learning and
serving continually. Wasim strives to find the most effective solution at the most
competitive price. He has built over 20 enterprise production virtual infrastructures using
Proxmox and the Ceph storage system.

Wasim and his team are notorious for not simply accepting a technology based on its
description alone, but putting it through rigorous testing to check its validity. Any new
technology that his company provides goes through months of continuous testing before it
is accepted. Proxmox made the cut superbly.

This book, Mastering Proxmox – Third Edition, would not have been possible without the
support and wholehearted cooperation of the team at Packt Publishing. I wish to
acknowledge my indebtedness to each of the team members who walked me through the
process of the major undertaking that was writing this book.

I also would like to acknowledge the support and dedication of the Proxmox VE developer
team, who made this great hypervisor available to all of us. Their vision and attention to
detail has enabled Proxmox VE to mature in a very short period of time since its first
release.

I am thankful to the global community of Proxmox users, whose combined experiences have
allowed me to learn many different scenarios in which Proxmox is used today.

Finally, I would like to acknowledge Charles McCrea, whose friendship and support played
an important role in bringing this book to completion.

About the Reviewers
Nicolas Ledez has been working as a system administrator since 2000. He has been in big
businesses such as Orange (a French telecom company) and in small organizations too.
His skills are in DevOps, Linux, Ruby, Python, Ansible, Chef, Saltstack, and others.
Currently, he is a DevOps architect at Cozy Cloud. You can find him on the internet with
the pseudonym nledez.

Jorge Moratilla Porras has a bachelor's degree in computer science and has been working
for internet companies since 1998. He has been working as a contractor for companies such
as Sun Microsystems and Oracle. His passions are teaching and improving workloads using
automation techniques. He has been working as a Sun Microsystems certified instructor and
field engineer for several years. He has a large background working with products such as
Sun Solaris, Linux, LDAP services, and CheckPoint. Recently, he has been working with
configuration management products such as Puppet and Chef on his assignments and has
been taking part in Madrid DevOps (a group of technicians devoted to continuous
deployment and DevOps culture) as coordinator. He promotes the adoption of a culture of
continuous improvement in enterprise and startups as the baseline to do great things. You
can meet him at talks and hangouts that he organizes in the community.

He has collaborated as a reviewer on other Packt titles as well:

Configuration Management with Chef-Solo by Naveed ur Rahman
Proxmox Cookbook by Wasim Ahmed

I would like to thank my wife, Nuria, and sons, Eduardo and Ruben, for being so
understanding and supportive while I was reviewing this book. Also, I would like to thank
my dear mom, Milagros, and dad, Toñi, who put in all their effort to give me an education.
Finally, I would also like to thank all those who have contributed to my personal and
professional development through the years.

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com. Did
you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

https:/​/​www.​packtpub. ​com/ ​mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https:/​/​www.​amazon. ​com/ ​dp/ ​1788397606.

If you'd like to join our team of regular reviewers, you can email us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1788397606
https://www.amazon.com/dp/1788397606
https://www.amazon.com/dp/1788397606
https://www.amazon.com/dp/1788397606
https://www.amazon.com/dp/1788397606
https://www.amazon.com/dp/1788397606
https://www.amazon.com/dp/1788397606
https://www.amazon.com/dp/1788397606
https://www.amazon.com/dp/1788397606
https://www.amazon.com/dp/1788397606
https://www.amazon.com/dp/1788397606
https://www.amazon.com/dp/1788397606
https://www.amazon.com/dp/1788397606

Table of Contents
Preface 1

Chapter 1: Understanding Proxmox VE and Advanced Installation 5

Understanding Proxmox features 6
It is free! 6
Built-in firewall 6
Open vSwitch 7
The graphical user interface 7
KVM virtual machines 8
Linux containers, or LXC 8
Storage plugins 8
Vibrant culture 9

The basic installation of Proxmox 9
The advanced installation option 10
Debugging the Proxmox installation 17
Proxmox subscription and repositories 18

Proxmox VE Enterprise repository 20
Type 21
Subscription key 21
Status 22
Server ID 22
Sockets 22
Last checked 22
Next due date 22

Proxmox VE No-Subscription repository 22
Proxmox VE Test repository 23

Summary 23

Chapter 2: Creating a Cluster and Exploring the Proxmox GUI 24

Creating a Proxmox cluster 24
Exploring the Proxmox GUI 28

The GUI menu system 29
Cluster tree view 31
Server View 31
Folder View 31
Storage View 32
Pool View 33

Table of Contents

[ii]

The Datacenter menu 33
Datacenter | Search 34
Datacenter | Summary 35
Datacenter | Options 35
Datacenter | Storage 36
Datacenter | Backup 36
Datacenter | Permissions 37

Datacenter | Permissions | Users 39
Datacenter | Permissions | Groups 39
Datacenter | Permissions | Pools 40
Datacenter | Permissions | Roles 40
Datacenter | Permissions | Authentication 41

Datacenter | HA 41
Datacenter | Firewall 42
Datacenter | Support 42

Node-specific menus 42
Node | Search 42
Node | Summary 43
Node | Shell 44
Node | System 45

Node | Network 46
Node | DNS 46
Node | Time 46
Node | Syslog 47

Node | Updates 48
Node | Firewall 49
Node | Disks 49
Node | Ceph 50
Node | Task History 51
Node | Subscription 51

KVM menu 52
KVM VM | Summary 52
KVM | Console 54
KVM | Hardware 55
KVM | Options 56
KVM VM | Task History 57
KVM | Monitor 57
KVM | Backup 58
KVM VM | Snapshot 58
KVM | Firewall 59
KVM | Permissions 59

LXC container menu 60
LXC container | Summary 60
LXC container | Resources 61
LXC container | Network 61
LXC container | DNS 61
LXC container | Options 62

Table of Contents

[iii]

LXC container | Task History 63
LXC container | Backup 63
LXC container | Snapshots 63
LXC container | Firewall 63
LXC container | Permissions 63

Pool menu 63
Pool | Summary 64
Pool | Members 65
Pool | Permissions 66

Summary 66

Chapter 3: Proxmox under the Hood 67

The Proxmox cluster file system 68
Proxmox directory structure 69
Dissecting the configuration files 71

The cluster configuration file 72
logging { } 73
nodelist { } 73
quorum { } 74
totem { } 75
interface { } 77

Storage configuration file 78
User configuration files 80
The password configuration file 81
KVM virtual machine configuration file 81
Arguments in the KVM configuration file 86
LXC container configuration file 87
Version configuration file 88
Member nodes 89
Virtual machine list file 90
The cluster log file 90
Ceph configuration files 91
Firewall configuration file 91

Summary 92

Chapter 4: Storage Systems 93

Local storage versus shared storage 94
Live migration of a virtual machine 94
Seamless expansion of multinode storage space 97
Centralized backup 97
Multilevel data tiering 98
Central storage management 98

Local and shared storage comparison 100

Table of Contents

[iv]

A virtual disk image 100
Supported image formats 100

The .qcow2 images 102
The .raw image type 102
The .vmdk image type 103

Virtual device types 104
Managing disk images 104

Resizing a virtual disk image 105
Moving a virtual disk image 106
Throttling a virtual disk image 108
Caching a virtual disk image 110

VirtIO bus type for Windows VMs 112
Installing VirtIO drivers during Windows installation 112
Installing VirtIO drivers after Windows installation 115

Storage types in Proxmox 115
Directory 115
iSCSI 116
Logical Volume Management 117
NFS 118
ZFS 119
Ceph RBD 123
GlusterFS 123

Noncommercial/commercial storage options 126
Summary 127

Chapter 5: Installing and Configuring Ceph 128

Ceph components 129
A physical node as cluster member 129
Maps 129

A cluster map 129
A CRUSH map 130

Monitor 130
OSD 131

OSD journal 131
Metadata server 131
PG 132
Pools 134
Ceph components summary 135

Virtual Ceph for training 136
Installing a Ceph cluster 136

Installing Ceph on Proxmox 137
Preparing a Proxmox node for Ceph 137

Table of Contents

[v]

Installing Ceph 138
Creating mons from the Proxmox GUI 142
Creating OSDs from Proxmox GUI 143
Managing a Ceph pool using Proxmox GUI 146
Creating a Ceph pool using Proxmox GUI 148
Connecting Ceph to Proxmox 149
Ceph command list 151

Summary 152

Chapter 6: KVM Virtual Machines 153

Exploring KVM 154
Creating a KVM 154

Creating a KVM using an ISO image 155
General tab 156

Node 156
VM ID 156
Name 156
Resource Pool 156
Help 156

The OS tab 157
The CD/DVD tab 158
The Hard Disk tab 159

Bus/Device 159
Storage 161
Disk size (GB) 161
Format 161
Cache 163
No backup 163
Discard 163
IO thread 164

The CPU tab 164
Sockets 165
Cores 166
Enabling NUMA 166
Type 166

The Memory tab 167
The Network tab 168

Bridged mode 168
Firewall 169
NAT mode 169
No network device 169
Model 169
MAC address 169
Rate limit (MB/s) 169
Multiqueues 170
Disconnect 170

Creating VM by cloning 170

Table of Contents

[vi]

Creating VMs from a template 172
Target node 174
Mode 174

Advanced configuration options for VMs 174
Configuring a sound device 175
Configuring PCI passthrough 175
Configuring GPU passthrough 177
Preparing for hotplug 179
Configuring VMs with hotplug 182

Hotplugging vCPUs 182
Hotplugging memory 182
Hotplugging disks/vNICs 183

Migrating KVM virtual machines 184
Summary 185

Chapter 7: LXC Virtual Machines 186

Exploring LXC virtual machines 186
Understanding container templates 187
Creating an LXC container 189

General tab 190
Node 190
CT ID 190
Hostname 190
Unprivileged container 190
Resource Pool 191

The Template tab 191
The Root Disk tab 192

Storage 193
ACLs 193
Enable quota 193

The CPU tab 194
Cores 194

The Memory tab 195
The Network tab 195

Name 196
MAC address 196
Bridge 197
The VLAN Tag 197
Rate limit 197
Firewall 197
IPv4/IPv6 197

The DNS tab 198
The Confirm tab 199

Managing an LXC container 199

Table of Contents

[vii]

Adjusting resources using the GUI 201
Adjusting resources using the CLI 203
Adjusting resources using direct modification 205

Migrating an LXC container 205
Accessing an LXC container 206

The noVNC console 207
Direct shell through the CLI 208

Converting OpenVZ to LXC 209
Summary 210

Chapter 8: Network of Virtual Networks 211

Exploring virtual networks 212
Physical networks versus virtual networks 212

A physical network 214
A virtual network 214

Networking components in Proxmox 215
Virtual Network Interface Cards 215

Adding/removing vNIC 216
A virtual bridge 217

Adding a virtual bridge through the GUI 218
Name 219
IP information 219
Bridge ports 220
VLAN-aware 220

Adding a virtual bridge through CLI 222
Extra bridge options 223

bridge_stp 223
bridge_fd 223

Virtual LAN 224
Adding a VLAN 225

Network Address Translation/Translator 228
Adding NAT/masquerading 228

Network bonding 229
Adding a bonding interface 231

The layer 2 hash policy 233
The layer 2+3 hash policy 233
The layer 3+4 hash policy 233

Multicast 236
Configuring multicast on Netgear 237

Open vSwitch 239
Features of Open vSwitch 240

Adding an Open vSwitch bridge 241
Adding the Open vSwitch bond 242

Table of Contents

[viii]

Adding Open vSwitch IntPort 244
CLI for Open vSwitch 245
Practicing Open vSwitch 246

Configuration requirements 246
Solutions 247

Sample virtual networks 248
Network #1 – Proxmox in its simplest form 248
Network #2 – the multi-tenant environment 249
Network #3 – academic institution 250

A multi-tenant virtual environment 252
A multi-tenant network diagram 253

Summary 255

Chapter 9: The Proxmox VE Firewall 256

Exploring the Proxmox VE firewall 257
Components of the Proxmox firewall 257

Zones 257
Security groups 259
IPSet 260
Rules 261
Protocols 262
Macros 263
The pve-firewall and pvefw-logger services 264

Configuration files of a firewall 265
Configuring the data center-specific firewall 266

Configuring the Datacenter firewall through the GUI 266
Creating the Datacenter firewall rules 267
Creating the Datacenter IPSet 269
Creating aliases 272

Configuring the Datacenter firewall through the CLI 275
[OPTIONS] 276
[ALIASES] 276
[IPSET <name>] 277
[RULES] 277
[group <name>] 277

Configuring a host-specific firewall 277
Creating host firewall rules 278

Options for the host zone firewall 279
Enable a firewall 279
The SMURFS filter 280
The TCP flags filter 280
NDP 281
nf_conntrack_max 281
nf_conntrack_tcp_timeout_established 282
log_level_in/out 283

Table of Contents

[ix]

tcp_flags_log_level 283
smurf_log_level 284

Configuring the host firewall through the CLI 284
Configuring a VM-specific firewall 285

Creating VM firewall rules 285
Creating aliases 285
Creating IPSets 285
Options for a VM zone firewall 286

Enable DHCP 286
The MAC filter 286
Input/output policy 287

Configuring a VM-specific firewall through the CLI 287
Integrating a Suricata IDS/IPS 287

Installing/configuring Suricata 288
Limitations of Suricata in Proxmox 290

Summary 291

Chapter 10: Proxmox High Availability 292

Understanding HA 292
HA in Proxmox 293
How Proxmox HA works 294

Requirements for HA setup 294
At least three nodes 294
Shared storage 295
Fencing 295
BIOS power-on feature 295

Configuring Proxmox HA 296
The HA menu 296

Status 297
The Resources menu 297

The Groups menu 299
ID 300
Node 300
The restricted checkbox 300
The nofailback checkbox 300

The Fencing menu 302
Testing Proxmox HA configuration 303
The Proxmox HA simulator 306

Configuring the Proxmox HA simulator 306
Summary 308

Chapter 11: Monitoring the Proxmox Cluster 309

Table of Contents

[x]

An introduction to monitoring 309
Proxmox built-in monitoring 310

Datacenter Status 310
Node Status 312

Zabbix as a monitoring solution 315
Installing Zabbix 316
Configuring Zabbix 318

Configuring a host to monitor 319
Displaying data using a graph 323
Configuring the disk health notification 325

Installing smart monitor tools 326
Configuring the Zabbix agent 326
Creating a Zabbix item in the GUI 327
Creating a trigger in the GUI 328
Creating graphs in the GUI 330

Configuring SNMP in Proxmox 330
Object Identifiers 331
Management Information Base 332

Adding an SNMP device in Zabbix 334
Monitoring the Ceph cluster with the Proxmox GUI 335
Monitoring a Ceph cluster with third-party options 337
Summary 339

Chapter 12: Proxmox Production-Level Setup 340

Defining the production level 341
Key components 341

Stable and scalable hardware 341
Redundancy 342

Node level 342
Utility level 343
Network level 343
HVAC level 343
Storage level 343

Current load versus future growth 344
Budget 344
Simplicity 344
Tracking hardware inventory 345
Hardware selection 345

Sizing CPU and memory 345
Single socket versus multi-socket 346
Hyper-threading – enable versus disable 346
Start small with VM resources 346
Balancing node resources 347

Table of Contents

[xi]

Ceph cluster production 347
Forget about hardware RAID 347
Solid State Drive for Ceph Journal 348
Network bandwidth 349

Liquid cooling 349
Total immersion in oil 350
Total immersion in 3M Novec 350
Direct contact liquid cooling 351

Real-world Proxmox scenarios 351
Scenario 1 – an academic institution 352
Scenario 2 – multi-tier storage cluster with a Proxmox cluster 355
Scenario 3 - Virtual infrastructure for a multi-tenant cloud service
provider 357
Scenario 4 – nested virtual environment for a software development
company 359
Scenario 5 – virtual infrastructure for a public library 361
Scenario 6 – multi-floor office virtual infrastructure with virtual desktops 363
Scenario 7 – virtual infrastructure for the hotel industry 365
Scenario 8 – virtual infrastructure for geological survey organization 367

Summary 369

Chapter 13: Back Up and Restore Virtual Machines 370

Proxmox backup options 371
A full backup 371

Full backup modes 371
Snapshot 371
Suspend 372
Stop 372

Backup compression 372
None 372
LZO 372
GZIP 373

Snapshots 373
Configuring backup storage 374

Show VM configuration from backup 376
Configuring full backup 377

Creating a schedule for backup 378
Node 379
Storage 379
Day of week 379
Start Time 379
Selection mode 380

Table of Contents

[xii]

Send email to 380
Email notification 380
Compression 380
Mode 380
Enable 381

Creating a manual backup 381
Creating snapshots 382
Restoring a virtual machine 383
Backup/restore through the CLI 385

Backup using the CLI 385
Restore using the CLI 386
Unlocking a VM after a backup error 388

Virtual machine replication 388
Creating a replication task through the GUI 390

Target 391
Schedule 391
Rate limit (MB/s) 391
Enabled 391

Creating a replication task through the CLI 392
Replication process 393

Backup configuration file 394
The bwlimit option 394
The lockwait option 395
The stopwait option 395
The stdexcludes option 395
The mailto option 395
The script option 395
The exclude-path option 396
The pigz option 396

Summary 397

Chapter 14: Updating/Upgrading Proxmox 398

Introducing Proxmox updates 398
Updating Proxmox through the GUI 399
Updating Proxmox through the CLI 401

Difference between upgrade and dist-upgrade 402
Recovering from the grub2 update issue 403
Updating after a subscription change 404
Rebooting dilemma after Proxmox updates 404

Applying update without reboot 406
Summary 406

Table of Contents

[xiii]

Chapter 15: Proxmox Troubleshooting 407

Proxmox node issues 408
Issue – fresh Proxmox install stuck with /dev to be a fully populated error
during node reboot 408
Issue – rejoining a node to a Proxmox node with the same old IP
address 409
Issue – Proxmox installation completed but grub is in an endless loop
after reboot 409
Issue – LSI MegaRAID 9240-8i/9240-4i causes an error during booting
of the Proxmox node 410

Downloading and updating the LSI driver 410
Updating the Supermicro BIOS 411

Issue – the Upgrade button is disabled on the Proxmox GUI, which
prevents the node upgrade 411
Issue – Proxmox cannot start due to the getpwnam error 412
Issue – cannot log in to the GUI as root after reinstalling Proxmox on the
same node 412

The main cluster issues 412
Issue – Proxmox virtual machines are running, but the Proxmox GUI
shows that everything is offline 413
Issue – kernel panic when disconnecting USB devices, such as a
keyboard, mouse, or UPS 413
Issue – virtual machines on Proxmox will not shut down if shutdown is
initiated from the Proxmox GUI 413
Issue – kernel panic with HP NC360T (Intel 82571EB chipset) only in
Proxmox VE 3.2 414
Issue – the Proxmox cluster is out of quorum and cluster filesystem is in
read-only mode 414
Issue – VM will not respond to shutdown or restart 415
Issue – Proxmox GUI not responding after Firefox update 415
Issue – the Proxmox GUI is not showing RRD graphs 415

Storage issues 416
Issue – deleting a damaged LVM from Proxmox with the error read
failed from 0 to 4096 416
Issue – Proxmox cannot mount NFS share due to the timing out error 416
Issue – how to delete leftover NFS shares in Proxmox or what to do
when the NFS stale file handle error occurs? 416
Issue – Proxmox issues --mode session exit code 21 errors while trying
to access the iSCSI target 417

Table of Contents

[xiv]

Issue – cannot read an iSCSI target even after it has been deleted from
Proxmox storage 417
Issue – a Ceph node is removed from the Proxmox cluster, but OSDs
still show up in PVE 417
Issue – the no such block device error during creation of an OSD
through the Proxmox GUI 417
Issue – the fstrim command does not trim unused blocks for the Ceph
storage 418
Issue – the RBD couldn't connect to cluster (500) error when connecting
Ceph with Proxmox 418
Issue – changing the storage type from IDE to VirtIO after the VM has
been set up and the OS has been installed 418
Issue – the pveceph configuration not initialized (500) error when you
click on the Ceph tab in the Proxmox GUI 419
Issue – the CephFS storage disappears after a Proxmox node reboots 420
Issue – VM cloning does not parse in the Ceph storage 420
Issue – VM disk images stored on ZFS is extremely slow 420

Network connectivity issues 421
Issue – no connectivity on Realtek RTL8111/8411 rev. 06 network
interfaces 421
Issue – network performance is slower with the E1000 virtual network
interfaces 422
Issue – patch port for Open vSwitch in Proxmox not working 422
Issue – trying to add a node to a newly created Proxmox cluster when
nodes do not form quorum 423
Issue – implemented IPv6 but firewall rules do not get applied 423

KVM virtual machine issues 423
Issue – Windows 7/XP machine converted to Proxmox KVM hangs
during boot 423
Issue – Windows 7 VM does not reboot, instead it shuts down, requiring
a manual boot from Proxmox 424
Issue – the qemu-img command does not convert the .vmdk image files
created with the .ova template in Proxmox VE 5.0 424
Issue – online migration of a virtual machine fails with a failed to sync
data error 425
Issue – no audio in Windows KVM 425
Issue – the VirtIO virtual disk is not available during the Windows Server
installation 426

LXC container issues 426

Table of Contents

[xv]

Issue – a Proxmox node hangs when trying to stop or restart an LXC
container 426
Issue – the noVNC console only shows a cursor for LXC containers 426

Backup/restore issues 427
Issue – a Proxmox VM is locked after backup crashes unexpectedly 427
Issue – how can Proxmox back up only the primary OS virtual disk
instead of all the virtual disks for a VM? 428
Issue – backup of virtual machines stops prematurely with an operation
not permitted error 428
Issue – a backup task takes a very long time to complete, or it crashes
when multiple nodes are backing up to the same backup storage 429
Issue – backup of virtual machines aborts a backup task prematurely 429
Issue – backup storage has a lot of .dat files and .tmp folders using the
storage space 429

VNC/SPICE console issues 430
Issue – the mouse pointer is not shared with SPICE (virt-viewer) on
Windows 8 VM 430
Issue – remote viewer is unable to connect to a SPICE-enabled virtual
machine on the Windows OS 430

Firewall issues 430
Issue – rules are created and a firewall is enabled for vNIC, but rules do
not get applied 430
Issue – a firewall is enabled for a VM and the necessary rules are
created, but nothing is being filtered for that VM 431

Summary 432

Chapter 16: Rescuing Proxmox 433

Recovering from OS drive failure 434
Physical drive failure 434
OS data corruption 434
Migrating VMs from a faulty node 435
Reinstalling Proxmox 436

Recovering from a quorum failure 436
Recovering from a node failure 438
Recovering from a network failure 438

Loss of connectivity between Proxmox nodes 439
Loss of connectivity between Proxmox nodes and users 439
Loss of connectivity between Proxmox and storage nodes 440

Recovering from Ceph failure 440
Best practices for a healthy Ceph cluster 440

Table of Contents

[xvi]

Stuck inconsistent PGs in Ceph 441
Stuck inactive incomplete PGs in Ceph 441
Error while moving a Ceph journal to another drive 442
Ceph node running out of resources during recovery 444

Summary 446

Index 447

Preface
Based on the foundation laid out by the first edition and second edition, this
book, Mastering Proxmox, Third Edition, brings updated information and details of the new
features of Proxmox VE 5.0. Since the first edition of this book was published, Proxmox has
been through many changes. With this third edition, I am confident that readers will be able
to upgrade their skills while building and managing even better Proxmox clusters.
This book shows the inner workings of Proxmox, including virtual network components,
shared storage systems, the Proxmox firewall, high availability, and other features.

What this book covers
Chapter 1, Understanding Proxmox VE and Advanced Installation, introduces Proxmox VE in
general and shows the advanced options available during installation.

Chapter 2, Creating a Cluster and Exploring the Proxmox GUI, explains how to create a cluster
and shows the layout of the graphical user interface.

Chapter 3, Proxmox under the Hood, explains the Proxmox directory structure and
configuration files.

Chapter 4, Storage Systems, explains how Proxmox interacts with storage and various
supported storage systems.

Chapter 5, Installing and Configuring Ceph, shows how to deploy and configure a fully
functional Ceph cluster along with Proxmox.

Chapter 6, KVM Virtual Machines, covers creating and managing KVM-based virtual
machines.

Chapter 7, LXC Virtual Machines, covers creating and managing LXC containers.

Chapter 8, Network of Virtual Networks, explains the different networking components used
in Proxmox to build virtual networks.

Chapter 9, The Proxmox VE Firewall, explains the built-in firewall feature of Proxmox.

Preface

[2]

Chapter 10, Proxmox High Availability, explains the high availability or redundancy feature
of Proxmox and how to configure it.

Chapter 11, Monitoring the Proxmox Cluster, shows how to configure the Zabbix-based
network monitoring option.

Chapter 12, Proxmox Production-Level Setup, explains different components in a production-
level setup.

Chapter 13, Back Up and Restore Virtual Machines, explains the backup and restore features
of Proxmox for disaster planning.

Chapter 14, Updating/Upgrading Proxmox, explains how to keep a Proxmox cluster up to
date.

Chapter 15, Proxmox Troubleshooting, lists real incidents that may arise in a Proxmox cluster,
with solutions.

Chapter 16, Rescuing Proxmox, shows ways to rescue a Proxmox cluster should a disaster
occur.

What you need for this book
Since we will be working with a Proxmox cluster throughout the book, it will be extremely
helpful to have a working Proxmox cluster of your own. A very basic cluster of two to three
nodes, along with a storage node, will do just fine. If learning to implement Ceph in a
Proxmox cluster, then a small cluster of two or three nodes for Ceph will also be extremely
helpful.

Who this book is for
This book is for readers who want to build and manage a virtual infrastructure based on
Proxmox as the hypervisor. Whether the reader is a veteran in the virtualized industry but
has never worked with Proxmox, or somebody is just starting out on a promising career in
this industry, this book will serve them well. Due to the advanced nature of this book, prior
conceptual knowledge of server virtualization, networking, and hypervisors is required.

Preface

[3]

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.
Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "The
keyring that we need to copy is located in /priv/ceph.client.admin.keyring."

A block of code is set as follows:

allow-vmbr1 ens21
iface ens21 inet manual
 ovs_type OVSPort
 ovs_bridge vmbr1

Any command-line input or output is written as follows:

apt-get install openvswitch-switch

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Open vSwitch bridge and
interface under the Create tab of the Network menu of the node."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply email
feedback@packtpub.com, and mention the book's title in the subject of your message. If
there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

http://www.packtpub.com/authors

Preface

[4]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from https:/ ​/ ​www. ​packtpub. ​com/ ​sites/ ​default/ ​files/
downloads/​MasteringProxmoxThirdEdition_ ​ColorImages. ​pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http:/ ​/​www. ​packtpub. ​com/ ​submit- ​errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title. To view the previously submitted errata, go to https:/ ​/​www. ​packtpub. ​com/
books/​content/​support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the internet, please provide us with
the location address or website name immediately so that we can pursue a remedy. Please
contact us at copyright@packtpub.com with a link to the suspected pirated material. We
appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/sites/default/files/downloads/MasteringProxmoxThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringProxmoxThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringProxmoxThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringProxmoxThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringProxmoxThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringProxmoxThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringProxmoxThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringProxmoxThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringProxmoxThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringProxmoxThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringProxmoxThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringProxmoxThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringProxmoxThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringProxmoxThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringProxmoxThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringProxmoxThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringProxmoxThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringProxmoxThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringProxmoxThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringProxmoxThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringProxmoxThirdEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringProxmoxThirdEdition_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1
Understanding Proxmox VE

and Advanced Installation
Virtualization, as we all know today, is a decades-old technology that was first
implemented in the mainframes of the 1960s. Virtualization was a way to logically divide
the mainframe's resources for different application processing. With the rise in energy costs,
running under-utilized server hardware is no longer a luxury. Virtualization enables us to
do more with less, thus saving energy and money while creating a virtual green data center
without geographical boundaries.

A hypervisor is a piece of software, hardware, or firmware that creates and manages virtual
machines. It is the underlying platform or foundation that allows a virtual infrastructure to
be built. In a way, it is the very building block of all virtualization. A bare metal hypervisor
acts as a bridge between physical hardware and the virtual machines by creating an
abstraction layer. Because of this unique feature, an entire virtual machine can be moved
over a vast distance over the internet and be made available to function exactly the same. A
virtual machine does not see the hardware directly; instead, it sees the layer of the
hypervisor, which is the same no matter what hardware the hypervisor has been installed
on.

The Proxmox Virtual Environment (VE) is a cluster-based hypervisor and one of the best-
kept secrets in the virtualization industry. The reason is simple. It allows you to build an
enterprise business-class virtual infrastructure at a small business-class price tag without
sacrificing stability, performance, and ease of use. Whether it is a massive data center to
serve millions of people, or a small educational institution, or a home serving important
family members, Proxmox can handle configuration to suit any situation.

Understanding Proxmox VE and Advanced Installation Chapter 1

[6]

If you have picked up this book, you are no doubt familiar with virtualization, and perhaps
well versed with other hypervisors, such as VMware, Xen, Hyper-V, and so on. In this
chapter and upcoming chapters, we will see the mighty power of Proxmox from the inside
out. We will examine scenarios and create a complex virtual environment. We will tackle
some heavy day-to-day issues and show resolutions that might just save the day in a
production environment. We will also learn how to deploy a highly redundant storage
system using Ceph to store virtual machines. So strap yourself in and let's dive into the
virtual world with the mighty hypervisor, Proxmox VE.

Understanding Proxmox features
Before we dive in, it is necessary to understand why one should choose Proxmox over the
other mainstream hypervisors. Proxmox is not perfect, but stands out among other
contenders with its hard-to-beat features. The following are some of the features that make
Proxmox a real game changer.

It is free!
Yes, Proxmox is free! To be more accurate, Proxmox has several subscription levels, among
which the community edition is completely free. One can simply download the Proxmox
ISO at no cost and raise a fully functional cluster without missing a single hypervisor
feature and without paying anything. The main difference between the paid and
community subscription level is that the paid subscription receives updates, which go
through additional testing and refinement. In a production cluster with a real workload, it
is highly recommended to purchase a subscription from Proxmox or Proxmox resellers.

Built-in firewall
Proxmox VE comes with a robust firewall ready to be configured out of the box. This
firewall can be configured to protect the entire Proxmox cluster down to a virtual machine.
The per-VM firewall option gives you the ability to configure each VM individually by
creating individualized firewall rules, a prominent feature in a multi-tenant virtual
environment. We will learn about this feature in detail in Chapter 9, The Proxmox VE
Firewall.

Understanding Proxmox VE and Advanced Installation Chapter 1

[7]

Open vSwitch
Licensed under Apache 2.0, Open vSwitch is a virtual switch designed to work in a multi-
server virtual environment. All hypervisors need a bridge between VMs and the outside
network. Open vSwitch enhances the features of the standard Linux bridge in an ever-
changing virtual environment. Proxmox fully supports Open vSwitch which allows you to
create an intricate virtual environment, all the while reducing virtual network management
overhead. For details on Open vSwitch, refer to http://openvswitch.org/.

We will learn about Open vSwitch management in Proxmox in Chapter 8, Network of
Virtual Networks.

The graphical user interface
Proxmox comes with a fully functional graphical user interface (GUI) out of the box. The
GUI allows an administrator to manage and configure almost all the aspects of a Proxmox
cluster. The GUI has been designed keeping simplicity in mind, with functions and features
separated into menus for easier navigation. The following screenshot shows an example of
the Proxmox GUI dashboard:

We will dissect the Proxmox GUI dashboard in Chapter 2, Creating a Cluster and Exploring
the Proxmox GUI.

http://openvswitch.org/

Understanding Proxmox VE and Advanced Installation Chapter 1

[8]

KVM virtual machines
A Kernel-based Virtual Machine (KVM) is a kernel module that is added to Linux for full
virtualization to create isolated, fully independent virtual machines. KVMs are not
dependent on the host operating system in any way, but they do require the virtualization
feature in BIOS to be enabled. A KVM allows a wide variety of operating systems for virtual
machines, such as Linux and Windows. Proxmox provides a very stable environment for
KVM-based VMs. We will learn how to create KVM VMs and also how to manage them in
Chapter 6, KVM Virtual Machines.

Linux containers, or LXC
Introduced in Proxmox VE 4.0, Linux containers, or LXCs, allow multiple Linux instances
on the same Linux host. All the containers are dependent on the host Linux operating
system and only Linux flavors can be virtualized as containers. There are no containers for
the Windows operating system. LXC replaces prior OpenVZ containers, which were the
primary containers in the virtualization method in the previous Proxmox versions. If you
are not familiar with LXC or want details on it, refer to https:/ ​/​linuxcontainers. ​org.

We will learn how to create LXC containers and manage them in Chapter 7, LXC Virtual
Machines.

Storage plugins
Out of the box, Proxmox VE supports a variety of storage systems to store virtual disk
images, ISO templates, backups, and so on. All plugins are quite stable and work great with
Proxmox. Being able to choose different storage systems gives an administrator the
flexibility to leverage the existing storage in the network. As of Proxmox VE 5.0, the
following storage plugins are supported:

The local directory mount points
LVM
LVM thin
NFS
iSCSI
GlusterFS

https://linuxcontainers.org
https://linuxcontainers.org
https://linuxcontainers.org
https://linuxcontainers.org
https://linuxcontainers.org
https://linuxcontainers.org
https://linuxcontainers.org

Understanding Proxmox VE and Advanced Installation Chapter 1

[9]

Ceph RADOS Block Devices (RBD)
ZFS over iSCSI
ZFS

We will learn the usage of different storage systems and the types of files they can store in
detail in Chapter 4, Storage Systems.

Vibrant culture
Proxmox has a growing community of users who are always helping others learn Proxmox
and troubleshoot various issues. With so many active users around the world, and through
active participation of Proxmox developers, the community has now become a culture of its
own. Feature requests are continuously being worked on, and the existing features are
being strengthened on a regular basis. With so many users supporting Proxmox, it sure is
here to stay.

Visit the following link for the official Proxmox forum: https:/ ​/​forum.
proxmox. ​com. ​

The basic installation of Proxmox
The installation of a Proxmox node is very straightforward. Simply accept the default
options, select localization, and enter the network information to install Proxmox VE. We
can summarize the installation process in the following steps:

Download the ISO from the official Proxmox site and prepare a disc with the1.
image (http:/ ​/ ​proxmox. ​com/ ​en/​downloads).

https://forum.proxmox.com
https://forum.proxmox.com
https://forum.proxmox.com
https://forum.proxmox.com
https://forum.proxmox.com
https://forum.proxmox.com
https://forum.proxmox.com
https://forum.proxmox.com
https://forum.proxmox.com
http://proxmox.com/en/downloads
http://proxmox.com/en/downloads
http://proxmox.com/en/downloads
http://proxmox.com/en/downloads
http://proxmox.com/en/downloads
http://proxmox.com/en/downloads
http://proxmox.com/en/downloads
http://proxmox.com/en/downloads
http://proxmox.com/en/downloads
http://proxmox.com/en/downloads
http://proxmox.com/en/downloads

Understanding Proxmox VE and Advanced Installation Chapter 1

[10]

Boot the node with the disc and hit Enter to start the installation from the2.
installation GUI, as shown in the following screenshot:

If an optical drive to use the installation disc is unavailable, we can also install
Proxmox from a USB drive.

Progress through the prompts to select options or type in information.3.
After the installation is complete, access the Proxmox GUI dashboard using the IP4.
address, as https://<proxmox_node_ip>:8006.

In some cases, it may be necessary to open the firewall port to allow access to the
GUI over port 8006.

The advanced installation option
Although the basic installation works in all scenarios, there may be times when the
advanced installation option is necessary. Only the advanced installation option provides
you the ability to customize the main OS drive.

A common practice for the operating system drive is to use a mirror RAID array using a
controller interface. This provides drive redundancy if one of the drives fails. This same
level of redundancy can also be achieved using a software-based RAID array, such as ZFS.
Proxmox now offers options to select ZFS-based arrays for the operating system drive right
at the beginning of the installation. For details on ZFS, if you are not familiar, refer
to https://en.wikipedia.org/wiki/ZFS.

https://en.wikipedia.org/wiki/ZFS

Understanding Proxmox VE and Advanced Installation Chapter 1

[11]

It is common to ask why one should choose ZFS software RAID over tried-
and-tested hardware-based RAID. The simple answer is flexibility.
Hardware RAID is locked, or fully dependent, on the hardware RAID
controller interface that created the array, whereas ZFS creates software-
based RAID which is not dependent on any hardware, and the array can
easily be ported to different hardware nodes. Should a RAID controller
failure occur, the entire array created from that controller is lost unless
there is an identical controller interface available for replacement. The ZFS
array is only lost when all the drives or a maximum tolerable number of
drives are lost in the array.

Besides ZFS, we can also select other filesystem types, such as ext3, ext4, or xfs, from the
same advanced option. We can also set the custom disk or partition sizes through the
advanced option. The following screenshot shows the installation interface with the target
hard disk selection page:

Understanding Proxmox VE and Advanced Installation Chapter 1

[12]

Click on Options, as shown in the preceding screenshot, to open the advanced options for
the hard disk. The following screenshot shows the option window with supported
filesystem drop-down menu:

Understanding Proxmox VE and Advanced Installation Chapter 1

[13]

We are going to select the ZFS mirror or RAID1, for the purpose of this book, in order to
create a demo cluster from scratch. In the preceding screenshot, we selected zfs (RAID1) for
mirroring, and the two drives, Harddisk 0 and Harddisk 1, to install Proxmox. The installer
will auto-select the installed disk drive, as shown in the following screenshot:

Understanding Proxmox VE and Advanced Installation Chapter 1

[14]

The Advanced Options include some ZFS performance-related configurations such as
compress, checksum, and ashift or alignment shift, as shown in the following screenshot:

For most environments, this configuration can be left as default.

If you are unfamiliar with ZFS advanced tuning, then the following link may be helpful to
get some insight on ZFS performance tuning options:

 http:/​/​open-​zfs. ​org/ ​wiki/ ​Performance_ ​tuning#Alignment_ ​Shift_ ​.​28ashift. ​29

http://open-zfs.org/wiki/Performance_tuning#Alignment_Shift_.28ashift.29
http://open-zfs.org/wiki/Performance_tuning#Alignment_Shift_.28ashift.29
http://open-zfs.org/wiki/Performance_tuning#Alignment_Shift_.28ashift.29
http://open-zfs.org/wiki/Performance_tuning#Alignment_Shift_.28ashift.29
http://open-zfs.org/wiki/Performance_tuning#Alignment_Shift_.28ashift.29
http://open-zfs.org/wiki/Performance_tuning#Alignment_Shift_.28ashift.29
http://open-zfs.org/wiki/Performance_tuning#Alignment_Shift_.28ashift.29
http://open-zfs.org/wiki/Performance_tuning#Alignment_Shift_.28ashift.29
http://open-zfs.org/wiki/Performance_tuning#Alignment_Shift_.28ashift.29
http://open-zfs.org/wiki/Performance_tuning#Alignment_Shift_.28ashift.29
http://open-zfs.org/wiki/Performance_tuning#Alignment_Shift_.28ashift.29
http://open-zfs.org/wiki/Performance_tuning#Alignment_Shift_.28ashift.29
http://open-zfs.org/wiki/Performance_tuning#Alignment_Shift_.28ashift.29
http://open-zfs.org/wiki/Performance_tuning#Alignment_Shift_.28ashift.29
http://open-zfs.org/wiki/Performance_tuning#Alignment_Shift_.28ashift.29
http://open-zfs.org/wiki/Performance_tuning#Alignment_Shift_.28ashift.29
http://open-zfs.org/wiki/Performance_tuning#Alignment_Shift_.28ashift.29
http://open-zfs.org/wiki/Performance_tuning#Alignment_Shift_.28ashift.29
http://open-zfs.org/wiki/Performance_tuning#Alignment_Shift_.28ashift.29
http://open-zfs.org/wiki/Performance_tuning#Alignment_Shift_.28ashift.29
http://open-zfs.org/wiki/Performance_tuning#Alignment_Shift_.28ashift.29
http://open-zfs.org/wiki/Performance_tuning#Alignment_Shift_.28ashift.29
http://open-zfs.org/wiki/Performance_tuning#Alignment_Shift_.28ashift.29

Understanding Proxmox VE and Advanced Installation Chapter 1

[15]

If we pick a filesystem such as EXT3, EXT4, or XFS instead of ZFS, the Harddisk options
dialog box will look like the following screenshot, with a different set of options:

Selecting a filesystem gives us the following advanced options:

hdsize: This is the total drive size to be used by the Proxmox installation.
swapsize: This defines the swap partition size.
maxroot: This defines the maximum size to be used by the root partition.
minfree: This defines the minimum free space that should remain after the
Proxmox installation.
maxvz: This defines the maximum size for the data partition. This is usually
/var/lib/vz.

Understanding Proxmox VE and Advanced Installation Chapter 1

[16]

From Proxmox VE version 5, we can select the interface that will be used for management.
This is very useful when a node has multiple network interfaces and we want to
intentionally use a particular interface for cluster management. The following screenshot
shows the management network interface selection screen during Proxmox installation:

Understanding Proxmox VE and Advanced Installation Chapter 1

[17]

Debugging the Proxmox installation
Debugging features are part of any good operating system. Proxmox has debugging
features that will help you during a failed installation. Some common reasons are
unsupported hardware, conflicts between devices, ISO image errors, and so on. Debugging
mode logs and displays installation activities in real time. When the standard installation
fails, we can start the Proxmox installation in debug mode from the main installation
interface, as shown in the following screenshot:

The debug installation mode will drop us in the prompt, as shown in the following
screenshot:

To start the installation, we need to press Ctrl + D. If there is an error during the installation,
we can simply press Ctrl + C to get back to this console to continue with our investigation.
From the console, we can check the installation log using the following command:

cat /tmp/install.log

Understanding Proxmox VE and Advanced Installation Chapter 1

[18]

At times, it may be necessary to edit the loader information when normal booting does not
function. This is a common case when Proxmox is unable to show the video output due to
UEFI or a nonsupported resolution. In such cases, the booting process may hang. From the
main installation menu, we can press E to enter edit mode to change the loader information,
as shown in the following screenshot:

One way to continue with booting is to add the nomodeset argument by editing the loader.
The loader should look as follows after the edit:

linux/boot/linux26 ro ramdisk_size=16777216 rw quiet nomodeset

Proxmox subscription and repositories
Proxmox itself is completely free to download and deploy without any cost. But a
subscription offers an added level of stability to any node used in a production
environment. Both free and subscribed versions have separate repositories and receive
updates differently.

Understanding Proxmox VE and Advanced Installation Chapter 1

[19]

Updates or packages released through the subscribed or Enterprise repository go through
additional testing and debugging before they are released. This is not to say the updates or
packages in the free repository are full of bugs and are released without testing. All
Proxmox patches, updates, and packages are taken through the complete development
cycle, including testing, before they are released. But Enterprise packages go through much
more comprehensive debugging and testing. This level of tests is mandatory for an
enterprise-class network environment where a small issue can cost a company a lot of
money. A highly stable environment is usually not needed in a home-based platform or
small business environment. The subscription menu allows you to activate a purchased
subscription on a node. So from a stability point of view, the enterprise version is without a
doubt the best choice for any production environment cluster. The price of an enterprise
subscription varies depending on the level of Proxmox support provided through tickets,
portal, and phone.

Free repository users can only reach out for support through the official Proxmox forum.
Proxmox developers quite often lend their expertise to address issues posted on the forum
by users. There is no portal or ticket system available for free users. Since this is a free
community forum, some issues may not get answered in time.

Even with the free version, Proxmox is still very stable. Do not let the
subscription level fool you into thinking that the free version is not even
worth considering.

Both free and enterprise versions can be mixed in the same environment. For example,
some critical nodes actively serving users can be on the enterprise version, while any non-
critical nodes, such as nodes used for testing, backup, and so on, can be on the free version.
Upon logging in through the free non-subscription Proxmox node through the GUI, we will
be presented with the following notification:

There are three package repositories for Proxmox:

Proxmox VE Enterprise repository

Understanding Proxmox VE and Advanced Installation Chapter 1

[20]

Proxmox VE No-Subscription or Free repository
Proxmox VE Test repository

Proxmox VE Enterprise repository
As the name suggests, this repository is for nodes with paid subscriptions. By default, the
Enterprise Repository is enabled in Proxmox. The repository information is in the file
/etc/apt/sources.list.d/pve-enterprise.list. We can disable the Enterprise
Repository by simply commenting it out with the # symbol in the following line:

deb https://enterprise.proxmox.com/debian jessie pve-enterprise

When disabling the Enterprise Repository, the No-Subscription Repository must be enabled
in order to receive updates, patches, and packages. If you're using the Enterprise Repository
on a mission-critical node and a subscription has been purchased, the subscription key can
be uploaded through the Proxmox GUI by clicking on the Upload Subscription Key button
under the Node | Subscription menu, as shown in the following figure:

Understanding Proxmox VE and Advanced Installation Chapter 1

[21]

Copy and paste the subscription key and then click on OK. Proxmox will automatically
check the validity of the key and activate the subscription for the node. A fully subscribed
node appears similarly to the following screenshot, under subscriptions in the GUI:

Let's look at the details provided through the Subscription page.

Type
This shows the name of the Proxmox subscription level. There are four levels of
subscription available: Community, Basic, Standard, and Premium. The higher the level,
the more support add-ons are included.

Subscription key
This is the alphanumeric subscription key the customer receives after purchasing any
subscription. The key is formatted in two parts: pveXx-XXXXXXXXXX. The first portion of
the key indicates which level of subscription this key belongs to and for how many server
sockets. For example, in the previous screenshot, the subscription key is for a Community-
level subscription for a server with two sockets. If this were the Premium-level subscription
for a server with four sockets, the key would appear as pve4p-XXXXXXXX.

All letters and numbers after the - are unique to each key and should not be shared with
unauthorized personnel or made public.

Understanding Proxmox VE and Advanced Installation Chapter 1

[22]

Status
This shows the current status of the subscription key.

Server ID
This uniquely generated ID belongs to one node only. When a subscription key is activated
on a particular server, the key gets associated with this unique ID. When a node needs to be
reinstalled without any hardware changes in it, the key can be reapplied to the server
without being reissued or reactivated. But if the key is to be applied to other server
hardware or if any major component (such as the CPU, motherboard, or memory) in the
server has been changed, then a new unique ID will be generated. In that case, the key will
need to be reissued or reactivated. This reissuing can be done by the user on the Proxmox
customer site or by the authorized reseller from whom the subscription key has been
purchased.

Sockets
This shows the physical CPU socket count of the server node.

Last checked
This shows the date and time of the last key validation check performed automatically by
the node or manually by the user.

Next due date
This shows the expiration date of the subscription key, by which the key needs to be
renewed. If the key is not renewed and expires, the Proxmox node will still continue to
function properly. But it will not receive any updates from the Enterprise Repository.

Proxmox VE No-Subscription repository
This repository includes updates and packages free of cost. If using this repository, changes
must be made to activate it. After disabling the Enterprise Repository, by following the
instructions in the previous section, add the following line to the file
/etc/apt/sources.list:

deb http://download.proxmox.com/debian jessie pve-no-subscription

Understanding Proxmox VE and Advanced Installation Chapter 1

[23]

Proxmox VE Test repository
This repository largely contains packages for testing purposes only. It is mainly used by
Proxmox developers to test new packages and allow interested users to test them as well.
Under no circumstances should this repository be used in a production environment. To
enable this repository, add the following line to /etc/apt/sources.list:

deb http://download.proxmox.com/debian jessie pvetest

Proxmox has the very best prices per subscription in the virtualization
product industry. The operating cost of a Proxmox cluster is minimal as
compared to a giant virtual product, such as VMWare. Proxmox provides
big-business virtualization at a small-business cost. For details of different
subscription levels, refer to http://proxmox.com/proxmox-ve/pricing.

Summary
In this chapter, we looked at why Proxmox is a better option as a hypervisor, what
advanced installation options are available during an installation, and why we choose
software RAID for the operating system drive. We also looked at different subscription
levels and their benefits. We learned about the presence of the debugging features to
investigate when an installation does not proceed as usual.

In next chapter, we will take a closer look at the Proxmox GUI and see how easy it is to
centrally manage a Proxmox cluster from a web browser.

http://proxmox.com/proxmox-ve/pricing

2
Creating a Cluster and

Exploring the Proxmox GUI
Proxmox VE can be used independently without being part of a cluster. But in order to truly
use Proxmox at its full potential, a cluster enables many more advanced features such as
centralized management, high availability, and live migration. We will look into the
features in later chapters. When multiple Proxmox nodes are in the same cluster, they can
all be managed and monitored by logging in to the Proxmox GUI through any member
node. There is no master-slave scheme in Proxmox. All nodes works together by sharing the
same configuration.

Creating a Proxmox cluster
A cluster is nothing but a group of Proxmox servers or nodes, sharing resources. A
Proxmox cluster can contain up to 32 physical nodes. If network latency permits, the
number of nodes can be higher. But any number of nodes higher than 32 may cause an
unstable situation within the cluster.

As of Proxmox VE 5, we cannot create clusters through the graphical interface. The entire
process of cluster creation must be done through the CLI. Proxmox provides a tool to create
and add nodes to a cluster called Proxmox VE Cluster Manager or pvecm.

When naming a cluster, keep in mind that it can be a maximum of 15
characters and only—can be used as a special character.

Creating a Cluster and Exploring the Proxmox GUI Chapter 2

[25]

To create a new cluster, log in to any available Proxmox node through SSH and run the
following command:

pvecm create <clustername>

For our first demo cluster, we are going to run the following command to create a cluster
named pmx-cluster:

pvecm create pmx-cluster

After successfully creating the cluster, we can quickly check it through the following
command:

pvecm status

The following screenshot shows the result after running the pvecm command:

Creating a Cluster and Exploring the Proxmox GUI Chapter 2

[26]

As shown in the previous screenshot, we have created a new cluster from node 1. We are
now going to add a second node into the cluster. To add a member node, log in to the node
through SSH, and then run the following command:

pvecm add <existing_member_ip>

If there is more than one member node in the cluster already, then the IP address in the
command can be any of those nodes. As mentioned earlier, there is no master-slave scheme
in a Proxmox cluster. All nodes share the same cluster configuration and information. For
our demo cluster, we are going to add our second node into the cluster using the following
command, where 172.16.2.1 is the assigned IP address of the first node in the cluster:

pvecm add 172.16.2.1

The command will initiate the process of adding the node into the cluster and will display
results as it progresses. The command also starts or restarts necessary services. The only
user prompt that is necessary in the beginning of the process is to enter the destination
node's root credentials. The following screenshot shows the command to add a node and
the process it progresses through:

Creating a Cluster and Exploring the Proxmox GUI Chapter 2

[27]

Sometimes it may be necessary to rejoin a member node with the same hostname and IP
address into the cluster for any number of reasons, such as a hostname change or reinstall.
The node-joining command will produce an error, as shown in the following screenshot, if
the node has the same network information as it had previously:

The reason this error occurs is the cluster configuration already has a node listed in it with
the same hostname and IP address. In such cases, we can add an option at the end of the
node-joining command as follows:

pvecm add <existing_mode_ip> -f

The command will forcefully rewrite the cluster configuration, recreate the SSH
authentication key, and join the member node. We can see the list of member nodes in the
cluster using the following command:

pvecm nodes

We can also use the pvecm command to remove or detach a member node from the cluster.
This command should be run from any node in the cluster except from the node being
detached.

Before removing a node from the cluster, ensure that all virtual machines
have been moved to other nodes of the cluster, because after the node is
detached, all VMs residing in the node will become inaccessible from the
rest of the nodes in the cluster.

The following command will remove a node from the Proxmox cluster:

pvecm delnode <hostname/IP>

Creating a Cluster and Exploring the Proxmox GUI Chapter 2

[28]

Exploring the Proxmox GUI
The Proxmox GUI allows users to interact with the Proxmox cluster graphically using
menus and a visual representation of the cluster status. Even though all of the management
can be done from the CLI, it can be overwhelming at times, and managing a cluster can
become a daunting task. To properly utilize a Proxmox cluster, it is very important to have
a clear understanding of the Proxmox GUI. The GUI can be accessed through any member
nodes in the cluster. From Proxmox VE 4.2, the GUI has been updated to Sencha Ext JS 6,
adding a new level of cluster visibility along with aesthetic appeal. We can now gather a lot
more, at-a-glance data while managing more details through the GUI.

In this chapter, we are going to explore the different parts of the Proxmox web GUI, such as
how the menu system is organized and the menus' functions. The GUI can be easily
accessed from just about any browser though a URL similar to https://<node_ip>:8006.
For our demo cluster, we are going to access the GUI through the
link: https://172.16.2.1:8006.

The following screenshot shows an example of the Proxmox GUI for our demo cluster:

Creating a Cluster and Exploring the Proxmox GUI Chapter 2

[29]

The GUI menu system
The Proxmox GUI is a single-page administration control panel. This means that no matter
which feature one is managing, the browser does not open a new page or leave the existing
page. Menus on the admin page change depending on which feature is being administered.
For example, in the preceding screenshot, the cluster known as Datacenter is selected, so
the main menu only shows cluster-specific menus. If a node is selected, the main menu
looks like the following screenshot, displaying node-specific menus:

Creating a Cluster and Exploring the Proxmox GUI Chapter 2

[30]

The following chart is a visual representation of the Proxmox GUI menu system. Some
menu options are system settings that need to be set up once during installation and do not
need any regular attention, such as DNS, time and services. Other menu items require
regular visits to ensure a healthy cluster environment, such as Summary, Syslog, Backup,
and Permissions:

Creating a Cluster and Exploring the Proxmox GUI Chapter 2

[31]

Cluster tree view
By default, the Proxmox GUI displays the cluster tree menu in the Server View mode. No
matter which view mode is selected, it does not change the main menu system. There are a
total of four modes that we can change the tree views to, as shown in the following
screenshot:

Server View
This is the default tree view, which shows the complete list of all nodes and the resources
they contain. Nodes can be uncollapsed to view the resources they contain, such as virtual
machines, containers, and the storage connected to them.

Folder View
This view separates different resources in a folder-like manner, such as Nodes, Pools,
virtual machine, and Storage. The following screenshot shows our demo cluster in Folder
View:

Creating a Cluster and Exploring the Proxmox GUI Chapter 2

[32]

Storage View
This view shows the list of nodes with only storage devices attached to them. It does not
show any virtual machines or other resources. This is a great view for storage
administrators to manage storage throughout the cluster. The following screenshot shows
the Storage View of our demo cluster:

Creating a Cluster and Exploring the Proxmox GUI Chapter 2

[33]

Pool View
This view shows a list of pools and resources allocated on those pools. In the Proxmox GUI,
we can create pools for different departments, customers, or just about any requirement
where certain resources need to be allocated for specific parties and managed separately.
The advantage of this is access permissions can be set at the pool level where an authorized
person can access all resources allocated to that pool. This eliminates the need to set
permissions for each individual resource. To cancel permissions, simply delete it from the
pool. The following screenshot shows the Pool View for our demo cluster:

The Datacenter menu
In the Proxmox GUI, Datacenter is the main-level folder of the Proxmox nodes/VMs tree.
Each data center can only hold one Proxmox cluster. As of Proxmox VE 5, it is not possible
to manage more than one cluster through the Proxmox GUI. Any task performed through
the Datacenter menu affects the cluster as a whole. Let's now look at the various options
available in the Datacenter menu.

Creating a Cluster and Exploring the Proxmox GUI Chapter 2

[34]

Datacenter | Search
It is very easy to manage a cluster with a small number of virtual machines with an even
smaller number of Proxmox and storage nodes. When maintaining a large number of
virtual machines and Proxmox nodes, the search feature can save a lot of time for an
administrator spent in scrolling and manually looking for a particular resource. This is
where the Search menu option can come in handy. The following screenshot shows a search
result after typing a node name in the Search box in our example cluster:

The Search box under Datacenter | Search shows the results in real time as you type in the
box. It can search with any string in the Type or Description columns. It can be the partial
name of a VM, VMID, or VM Type (qemu, lxc).

Wildcards are not supported in search strings. The Datacenter search page
also shows a complete list of all resources of the cluster. Prior to version
4.3 this information was available under Datacenter | Summary.

It is worth mentioning here that there is another cluster-wide search option available that is
accessible from anywhere in the GUI menu system. It is located at the top of the GUI page
next to Proxmox version information, as shown in the following screenshot:

This search box functions exactly like the Search option under the Datacenter menu.

Creating a Cluster and Exploring the Proxmox GUI Chapter 2

[35]

Datacenter | Summary
Starting from Proxmox VE version 4.3, the Summary menu in Datacenter now displays
much more information, including real-time cluster performance data showing real-time
clusters, rather than showing a list of all the member nodes in the Proxmox cluster. The
following screenshot shows the node list in the Summary menu for our demo cluster:

Datacenter | Options
Options in the Datacenter menu allows you to set the Keyboard Layout language, HTTP
proxy, default Console Viewer, and Email from address format that the Proxmox node
sends root emails from. We can also change the default MAC address prefix for all auto-
created MAC addresses within the cluster from this menu. The following screenshot shows
the Options menu for our demo cluster:

Creating a Cluster and Exploring the Proxmox GUI Chapter 2

[36]

Datacenter | Storage
The Storage menu is probably one of the most important menu options in the GUI. This is
where the Proxmox cluster and storage system come together. This is the menu to attach or
detach various storage systems with Proxmox. In Chapter 4, Storage Systems, we are going
to dive deeper into the Proxmox storage system. The following screenshot shows attached
Storage in a Proxmox cluster:

Datacenter | Backup
Cluster-wide backup schedules are created through this menu. No backup tasks can be
directly performed here. A good backup plan is the first line of defense against any disaster
that can cause major or minor data loss. In our ultra-modern digital world, data is much
more valuable than ever before. Every virtual environment administrator struggles with a
backup strategy of their virtual environment.

Creating a Cluster and Exploring the Proxmox GUI Chapter 2

[37]

The fine line between granular files and an entire virtual machine backup is somewhat
diminished in a virtual environment. To take the daily struggle of a backup plan out of the
equation, Proxmox added an excellent backup system right in the hypervisor itself.

As of Proxmox VE 5.0, we can only schedule backup tasks up to 1 week.
Although the backup feature cannot back up individual files inside a
virtual machine, it works well while backing up an entire virtual machine.

Proxmox backups can be scheduled over multiple storage systems, multiple days, and time.
In Chapter 13, Back Up and Restore Virtual Machines, we will learn what backup and restore
options are available in Proxmox as part of disaster planning.

Datacenter | Permissions
This Permissions menu allows you to set cluster-wide access permission levels to a user.
The menu also shows you a complete list of all the permissions already assigned to users.
The same permissions can be set from the virtual machine and storage specific permission
menus. When setting permissions from the Datacenter | Permissions menu, we have to
type in the path for the entity we want to set the permission for. For example, the following
screenshot shows virtual machines assigned to some users:

Creating a Cluster and Exploring the Proxmox GUI Chapter 2

[38]

Following are the paths formats for user permission level for VMs, storages and pool:

To assign the user permission level for both the KVM and LXC virtual machines,
the path format is /vms/<vm/lxc_id>.
To assign the user permission level for storage, the path format is
/storage/<storage_name>.
To assign the user permission level for pools, the path format is
/pool/<pool_name>.

The group permission level can also be set from this Permissions menu. Before we can
create permissions for users or groups, we have ensured the user or group exists through
the Users and Groups menu under Permissions. The following screenshot shows the
permission-creating dialog box:

Creating a Cluster and Exploring the Proxmox GUI Chapter 2

[39]

Datacenter | Permissions | Users
This menu allows the user creator to assign different permission levels for a Proxmox
cluster or virtual machine access. Changes to user details, removal of users and changing
passwords, and assigning groups are also performed from this menu. The following
screenshot shows the user-creation window with some example data:

The Proxmox user management allows you to set a user's access expiration date. This is
very useful when giving a user temporary access, which must be deactivated after a certain
number of days. This option is good for temporary access, such as contracted employees or
vendor access.

Datacenter | Permissions | Groups
This menu helps you create, edit, and remove groups only. When the same permission is to
be granted to multiple users, it is easier to assign those users to a group and then assign the
permission level to that group only instead of all the users individually. This saves a lot of
time and makes user management much simpler. The following screenshot shows a list of
three groups in the example cluster:

Creating a Cluster and Exploring the Proxmox GUI Chapter 2

[40]

Datacenter | Permissions | Pools
Pools in a Proxmox cluster are a way of grouping different entities, such as storage and
virtual machines. For example, in a multi-tenant virtual environment, we can assign storage
to virtual machines that belong to a client in a separate pool so that it is easy to view
resources assigned to that client. We can create, edit, or remove pools from this menu.

Datacenter | Permissions | Roles
This menu only shows predefined roles or permission levels that come with Proxmox 4.1.
There are no options to edit or add new levels. The menu also shows defined privileges for
each role. These roles can be assigned to users or user groups to set different user
permission levels.

Creating a Cluster and Exploring the Proxmox GUI Chapter 2

[41]

Datacenter | Permissions | Authentication
By default, Proxmox creates the PAM and PVE authentication realm. Through this menu,
we can create a new authentication realm, such as LDAP and an Active Directory server.
We can also configure two-factor authentication from this menu. The following screenshot
shows the authentication menu with options to add two-factor authentication for a PAM
realm:

Datacenter | HA
High Availability (HA) has never been easier than it is in Proxmox VE 5. It is now much
simpler to configure all through the GUI. In simple words, an HA-enabled virtual machine
is automatically moved to a different node during node failure. We will learn how to
configure and leverage HA in Chapter 10, Proxmox High Availability.

Creating a Cluster and Exploring the Proxmox GUI Chapter 2

[42]

Datacenter | Firewall
The Proxmox built-in firewall is one of the most prominent features in recent versions. It
allows firewall rules down to the virtual machine level while protecting with cluster-wide
rules. A firewall works at both the cluster and virtual machine level, which can be
configured to allow or deny connections to and from specific IP addresses. Any firewall
rules under the Datacenter menu apply to the entire cluster. Chapter 9, The Proxmox VE
Firewall, has been dedicated to learning about the firewall feature in greater length.

Datacenter | Support
This menu tab shows support options that are available when there is a paid subscription
applied to a node. Without any paid subscription-level node in the cluster, the menu
displays no support information, as shown in the following screenshot:

Refer to the Proxmox subscription and repositories section in Chapter 1, Understanding
Proxmox VE and Advanced Installation, for information on the benefits of having a paid
subscription.

Node-specific menus
Node-specific menu options are specific to each node in the cluster. New menu tabs become
available as each node is selected from the left-hand side navigation pane.

Node | Search
This is similar to the Search option in the datacenter-specific menu; this search option limits
the scope of your search to the selected node.

Creating a Cluster and Exploring the Proxmox GUI Chapter 2

[43]

Node | Summary
The Summary menu option for a node is a visual representation of real-time data of the
node's health. It shows vital information, such as uptime and resource consumption. The
Summary menu also shows CPU usage, server load, memory usage, and network traffic in
a very easy-to-understand graph. An administrator can get the necessary information of a
node just by glancing at the summary. The graphs can be viewed on an hourly, daily,
weekly, monthly, and yearly basis. The following screenshot shows the summary of node
pmx-01 in our demo cluster:

Creating a Cluster and Exploring the Proxmox GUI Chapter 2

[44]

Node | Shell
This menu opens the shell console of the node right in the same browser instead of a pop-
up window. One of the benefits of opening the shell inside the browser is that sometimes a
console opened in a pop-up window does not resize well. That makes the console partially
visible, which can be a great annoyance at times when trying to manage the node through
the CLI. A console opened through this Shell option will always resize to the full view of
the console. The following screenshot shows the Shell window of our node pmx-01:

We can still open the console separately in a browser window using the existing Shell
button in the upper-right corner of the GUI, as shown in the following screenshot:

Creating a Cluster and Exploring the Proxmox GUI Chapter 2

[45]

Node | System
This menu displays the status of all the vital services in the node. We can also start or stop a
specific service from this menu without going through the CLI. During troubleshooting or
node maintenance, services may need to start or stop, or the status of a service may be
unknown. This menu lists all running or stopped services for the node. The following
screenshot shows services running in one of the nodes in our example cluster:

Creating a Cluster and Exploring the Proxmox GUI Chapter 2

[46]

Node | Network
The Network menu acts as the glue between all virtual machines, nodes, and shared storage
systems. Without a proper network interface card (NIC) or virtual NIC (vNIC) and a
virtual bridge setup, no communication can take place. A deeper understanding of this
menu will allow you to create a very complex web of clusters, nodes, and virtual machines.
We will take a closer look at the network components later in this book in Chapter 8,
Network of Virtual Networks. The following screenshot shows the node Network menu with
some interfaces already configured:

The concept of a virtual network depends on the building blocks of the
virtual bridge, virtual NIC, and virtual LAN. Network virtualization is the
future of physical networks as server virtualization had been for physical
servers. The Proxmox virtual network provides a hardware abstraction
layer, making the virtual network much more flexible and compatible.

Node | DNS
The DNS menu for the node allows you to set the default DNS server address to be used by
all virtual machines in the node. The DNS settings are very important for containers as they
will use the nodes for their access to the internet.

Node | Time
Through this menu, we can define the time zone and current time where the node is
physically located. This is a useful feature when cluster nodes are spread across regions. For
a healthy cluster, it is very important for all nodes' times to be in sync with each other.

Creating a Cluster and Exploring the Proxmox GUI Chapter 2

[47]

Node | Syslog
The Syslog option allows an administrator to view the system log in real time. Syslog gives
feedback as it happens in the node. It also allows you to scroll up to view logs from the past.
More importantly, if an error occurs in the node, Syslog gives that information in real time
with the time and date stamp. This helps pinpoint an issue exactly when it occurs. An
example of a scenario when Syslog information can come in handy is that if a node cannot
connect to a storage system, the Syslog screen will show you the error that is preventing the
connection. The following screenshot shows the Syslog record of our node pmx-01:

Creating a Cluster and Exploring the Proxmox GUI Chapter 2

[48]

Node | Updates
The Proxmox node can be updated right from the GUI through the Updates tab. Each node
checks daily for any available updates and alerts the administrator through an email if there
are any new updates. It is important to keep all the nodes up to date by updating regularly.
The Updates menu enables upgrading by just using a few mouse clicks. The following
screenshot shows the node's Updates menu with some pending upgrades available for one
of the nodes in our example cluster:

Always update one node at a time. Some updates require the node to be
restarted. If uptime is important, then migrate all the running virtual
machines to a different node before restarting the upgraded node.

Creating a Cluster and Exploring the Proxmox GUI Chapter 2

[49]

Node | Firewall
The Firewall menu for a node allows you to manage rules specific to virtual machines in
that node only. When a VM is migrated or moved to a different node, the rules from the
previous node will no longer apply to that VM. We will take a look at the firewall menu in
detail in Chapter 9, The Proxmox VE Firewall.

Node | Disks
The Disks menu shows information about physically installed disk drives in the node. As
of Proxmox version 5, the disk menu can show S.M.A.R.T. information, including the
model and a serial number of the drive. For SSDs, the menu also displays the percentage of
remaining life. The following screenshot shows the disk menu of a production node with a
Proxmox operating system SSD and Ceph HDD installed:

Creating a Cluster and Exploring the Proxmox GUI Chapter 2

[50]

Node | Ceph
Proxmox seamlessly integrates the Ceph RBD storage to store virtual disk images. The
superb resilience of Ceph and its extremely low price makes it a truly enterprise-class
storage system to rely on. We will learn how to install and configure a Ceph cluster and
manage it through Proxmox GUI properly to realize its full potential in Chapter 5, Installing
and Configuring Ceph. We will also look at the Ceph menu in that chapter. The Ceph menu
in the Proxmox GUI displays real-time Ceph cluster data, as shown in the following
screenshot:

Creating a Cluster and Exploring the Proxmox GUI Chapter 2

[51]

Node | Task History
The Task History menu displays all the user tasks performed in the node. The following
screenshot shows the task history of the node pmx-01 in our example cluster:

By typing in the username in the User name: textbox, we can filter the history for a specific
user. This is very useful in a multi-user cluster where many users manage their own set of
virtual machines. We can also only view tasks with errors by clicking on the Only Errors:
checkbox.

Node | Subscription
This menu shows information on the subscription or no-subscription level of the node. This
menu is also used to apply new subscriptions or check an existing subscription key expiry.
The following screenshot shows subscription information of a production Proxmox node:

Creating a Cluster and Exploring the Proxmox GUI Chapter 2

[52]

To apply or reapply a subscription key, click on the Upload Subscription Key button and
enter the key you got directly from Proxmox or an authorized reseller, and then click
on OK, as shown in the following screenshot:

KVM menu
This menu is exclusive to KVM-based virtual machines. The menu tab is visible when a
KVM virtual machine is selected from the left-hand navigation pane.

Creating a Cluster and Exploring the Proxmox GUI Chapter 2

[53]

KVM VM | Summary
This menu tab represents similar information as the one accessed by navigating to Node |
Summary. Valuable information can be gathered that shows the real-time status of a KVM-
based virtual machine. One additional feature this menu has is the Notes textbox. Double-
clicking on the Notes textbox brings up a multiline textbox where an administrator can
enter data, such as the department, the intended usage of the VM, or just about any other
information that needs to be on hand. The following screenshot shows the summary of one
of the KVM VMs in our example cluster:

Creating a Cluster and Exploring the Proxmox GUI Chapter 2

[54]

KVM | Console
Similar to the shell console option of the node-specific menu, the KVM console menu also
shows the VM within the browser using noVNC. Virtual Network Computing or VNC is a
cross-platform system to share graphical user interface across network which also transmits
keyboard and mouse signals. This allows an user to access an interface remotely. VNC
requires java in order to function. To eliminate the shortfall of java, noVNC was born.
noVNC relies on HTML5 operate so it works through any HTML5 supported browser. To
open the VM console in a separate browser, we need to click on a viewer from the Console
drop-down menu, as shown in the following screenshot:

When the VM video adapter is not set to SPICE, the option to select the SPICE console is
disabled. SPICE (known as Simple Protocol for Independent Computing Environment) is
a protocol that allows you to access a virtual machine or any physical machine remotely.
SPICE can be used to access both Windows and Linux-based machines. Unlike noVNC,
where a browser can be used to access a VM remotely, SPICE requires client software
locally. Learn more about SPICE from here: http:/ ​/​www. ​spice- ​space. ​org/ ​index. ​html.

http://www.spice-space.org/index.html
http://www.spice-space.org/index.html
http://www.spice-space.org/index.html
http://www.spice-space.org/index.html
http://www.spice-space.org/index.html
http://www.spice-space.org/index.html
http://www.spice-space.org/index.html
http://www.spice-space.org/index.html
http://www.spice-space.org/index.html
http://www.spice-space.org/index.html
http://www.spice-space.org/index.html
http://www.spice-space.org/index.html
http://www.spice-space.org/index.html
http://www.spice-space.org/index.html
http://www.spice-space.org/index.html

Creating a Cluster and Exploring the Proxmox GUI Chapter 2

[55]

KVM | Hardware
The initially created virtual machine is always never the final configuration. As the
functions of a VM rise, it becomes necessary to add virtual drives or network interfaces. The
Hardware menu tab under the virtual machine is where the adding and removing of
devices happens. Through the Add menu, additional CD drives, hard drives, and network
interfaces (bridge, vNIC, and so on) can be added to a virtual machine. The following
screenshot shows the configured hardware for our example KVM VM #100:

Besides the Add menu, other menus, such as Remove, Edit, Resize disk, and Move disk,
are also available through the Hardware menu. All these additional menus, except the Add
menu, require a hardware item to be selected. Resize disk and Move disk will be enabled
for clicking when a virtual drive is selected. We will cover these in detail in Chapter 6,
KVM Virtual Machines.

Move disk is the safest way to move a virtual hard drive from one storage
to another. If the virtual disk is on shared storage, then live migration of
the virtual disk is possible, helping save a lot of time.

We will explore KVM virtual machine configuration in detail in Chapter 6, KVM Virtual
Machines.

Creating a Cluster and Exploring the Proxmox GUI Chapter 2

[56]

KVM | Options
The Options menu under the virtual machine allows further tweaking, such as changing
the name and boot order. Most of the options here can be left to default.

If you want the virtual machine to autostart as soon as the Proxmox node
reboots, set the Start at boot option to Yes.

The following screenshot shows the Options menu for a KVM VM:

Creating a Cluster and Exploring the Proxmox GUI Chapter 2

[57]

KVM VM | Task History
The Task History menu shows all the tasks performed for a specific VM. This functionality
is identical to the node-specific task history, where it shows all the tasks for all the KVM
virtual machines in the node.

KVM | Monitor
The Monitor menu in a KVM is an interface used to interact with a running KVM virtual
machine directly through the QEMU Monitor Protocol (QMP). We can initiate monitor
commands through the Proxmox monitor interface and see the result on the same page.
There are a large number of commands used to perform various tasks through the Monitor
menu. For example, in the following screenshot, we've entered the info pci command to
view the PCI devices that the VM sees at this moment:

Creating a Cluster and Exploring the Proxmox GUI Chapter 2

[58]

The monitor is a great way to debug a KVM VM-related issue due to the ability to gather a
vast amount of debugging data, including the memory core dump, CPU info, and so on. We
can also inject configurations, such as balloon memory configuration, additional CPUs, and
USB devices through this Monitor menu into a running KVM VM. Type help to view a list
of all the commands usable with Monitor.

KVM | Backup
A backup system is only as good as the ability to restore the backup. Both the backing up
and restoring can be done from a single menu under the virtual machine named Backup. It
also allows backups, browsing, and manual deletion of any backups. All these are done
from a single interface with a few mouse clicks. Due to the importance of a backup strategy
in a virtual environment, we will take a look at the Proxmox backup system in detail in
Chapter 13, Back Up and Restore Virtual Machines. This menu is usually used to manually
perform a backup task for a particular VM.

KVM VM | Snapshot
Proxmox Snapshots is a way to roll back a virtual machine to a previous state. Although it
provides similar protection to Proxmox Backup, it comes with speed. Proxmox Snapshots
is extremely fast when compared to Proxmox Backup, thus allowing a user to take several
snapshots a day. The following screenshot shows the Snapshots menu with a snapshot
taken after a clean installation of the operating system in the virtual machine:

Creating a Cluster and Exploring the Proxmox GUI Chapter 2

[59]

A common scenario where Snapshots can be used is when a software developer wants to
test the software or available patches that need to be applied. They can take a snapshot,
execute the program, and, if anything goes wrong, simply roll back to the previous state. It
creates a snapshot in the RAM itself, so the virtual machine is preserved.

Never fully depend on snapshots only. A snapshot is not a full backup. It
is merely a state where the virtual machine is frozen in time. Always do a
full backup of virtual machines for maximum protection. Snapshots are
never included in the full VM backup. Snapshots are also never
automatically deleted. As more and more snapshots are created, they will
accumulate over time, consuming storage space.

We will look into the Snapshots option as a backup strategy in Chapter 13, Back Up and
Restore Virtual Machines.

KVM | Firewall
Unlike the Datacenter | Firewall feature, which applies to the whole cluster, the KVM
firewall applies to the selected VM only. The KVM VM firewall allows you to configure
each virtual machine with its own set of firewall rules, thus isolating each VM from the
other even further. In a multi-tenant environment where there are many levels of users, this
firewall option helps you prevent a VM from accessing another VM. In Chapter 9, The
Proxmox VE Firewall, we will take a look at the VM firewall in detail.

KVM | Permissions
The Permissions menu allows the management of user permissions for a particular virtual
machine. It is possible to give multiple users access to the same virtual machine. Just click
on Add to add users or groups already created by navigating to the Datacenter | Users
and Datacenter | Groups menus. The following screenshot shows that our example VM has
one user permission:

Creating a Cluster and Exploring the Proxmox GUI Chapter 2

[60]

LXC container menu
This menu is specific to only LXC-based containers. The menu tab is visible when an LXC
container is selected from the left-hand navigation pane.

LXC container | Summary
Like the Summary menu under the KVM-specific menus, this shows the stats, notes, and
usage graph of an LXC container. Data can be viewed on an hourly, daily, weekly, monthly
or yearly basis.

Creating a Cluster and Exploring the Proxmox GUI Chapter 2

[61]

LXC container | Resources
Additional resources for LXC Containers are adjusted here after a container is created.
Changes in the resources get applied to a container in real time. We will look into container
resource management in Chapter 7, LXC Virtual Machines. The following screenshot shows
the resources currently allocated for our example container #101:

LXC container | Network
The Network menu for a container shows the currently assigned network interface. We can
add a new interface or make changes to any existing interface from this menu. The
following screenshot shows the Network menu for our example container:

LXC container | DNS
Similar to the DNS menu under the node-specific menus, the DNS menu for a container is
used to configure the DNS search domain and DNS server address. Additionally, we can
change the Hostname of the container. The following screenshot shows the DNS menu for
our container #101:

Creating a Cluster and Exploring the Proxmox GUI Chapter 2

[62]

LXC container | Options
Similar to the Options menu under KVM VMs, this menu provides additional configuration
options for containers. Options such as autostart during node boot, Start/Shutdown order,
and selection of the OS Type in the container are available through this Options menu. The
following screenshot shows the Options menu for our container #101:

Details about these options will be discussed later in the book in Chapter 7, LXC Virtual
Machines.

Creating a Cluster and Exploring the Proxmox GUI Chapter 2

[63]

LXC container | Task History
The Task History menu shows a list of all the tasks performed on the selected container.
Similar to the Task History menu under KVM VMs, the container's task history provides a
means to search for tasks performed by specific users or only shows tasks with errors.

LXC container | Backup
This menu is identical to the Backup menu under KVM VMs, where we can perform a
manual backup of a selected container, remove a backup file, or restore a container from a
list of backup files. The details of the backup and restore strategy will be covered in detail in
Chapter 13, Back Up and Restore Virtual Machines.

LXC container | Snapshots
This menu offers identical functionality as KVM Snapshots, where we can create snapshots
of the container or roll back to a previous state. More about snapshots will be covered
in Chapter 13, Back Up and Restore Virtual Machines.

LXC container | Firewall
Similar to the KVM-specific Firewall menu, this menu enables and manages firewall rules
for a particular LXC container. More will be discussed in Chapter 9, The Proxmox VE
Firewall.

LXC container | Permissions
Similar to the KVM-specific Permissions menu, we can set different permission levels for a
container through this menu. Refer to the Permissions menu under the KVM-specific menu
as they are identical for both the KVM and LXC virtual machines.

Pool menu
This menu is visible when a Pool is selected from the left-hand navigation pane. Let's now
look at each of the options in detail.

Creating a Cluster and Exploring the Proxmox GUI Chapter 2

[64]

Pool | Summary
The Summary menu for the pool only shows the Comment description for the pool, as
shown in the following screenshot:

We cannot, however, change the description or add a note from the Pools menu. This task
can be done through the Datacenter | Permissions | Pools menu. From there, select the
desired pool and change the description. This is also the same menu to add new pools to the
cluster. The following screenshot shows the pool edit dialog box for our demo pool, Test-
Pool1:

Creating a Cluster and Exploring the Proxmox GUI Chapter 2

[65]

Pool | Members
This menu shows all the resources currently allocated to the selected pool. We can allocate
virtual machines or storage to a pool. For example, in our demo pool named Test-Pool1,
we have a container #101 and local storage allocated, as shown in the following screenshot:

New resources can be added through the Add drop-down menu. We can only add virtual
machines and storage to a pool. To add a KVM or LXC container, simply click on the Add
button and select a virtual machine from the dialog box, as shown in the following
screenshot:

Conveniently, the dialog box will only show virtual machines that have not been added to
the pool yet. For our example in the previous screenshot, container #101 has been already
added to the pool so the dialog box only shows 100 available virtual machines. The
procedure to add storage to a pool is the same as adding a virtual machine.

Creating a Cluster and Exploring the Proxmox GUI Chapter 2

[66]

Pool | Permissions
The Permissions menu under Pools is the same as the KVM and LXC virtual machine
permissions. With these permissions, we can assign a user to a pool and all the resources
under that pool become accessible to that user. This eliminates any need of assigning
permissions individually by resources. For example, if a user requires access permissions to
multiple virtual machines, we can put those virtual machines in a pool and give the user
permissions to that pool only. The following screenshot shows that in our example pool
named Test-Pool1, the user wahmed has been given administrative permissions to manage
the pool:

Summary
In this chapter, we learned how to create a Proxmox cluster and explored the graphical user
interface of Proxmox VE. We learned about how the menu system is divided into different
entities and what features are used to manage resources in a Proxmox cluster. We also saw
different modes of the viewing option to browse all the resources in a Proxmox cluster.

Being equipped with the knowledge of the Proxmox GUI and its features paves the way for
much more advanced topics in the coming chapters. Although Proxmox provides many
management options through the CLI, a great deal of time is still spent on the Proxmox GUI
for day-to-day cluster management.

In the next chapter, we will see what is under the hood of Proxmox. We will see how the
Proxmox directory structure is laid out to store vital configuration files and what the
Proxmox cluster filesystem is and why it is important.

3
Proxmox under the Hood

In the previous chapter, we saw how the Proxmox GUI looks and also looked at its features.
In this chapter, we will take a look how configuration files hold a Proxmox virtualization
platform together, and the files to be used for advanced configuration and how they are
used to troubleshoot a Proxmox platform. Proxmox is built on Debian Linux, which is very
stable with a large active community. So, it inherited the heavy dependency on
configuration or .conf files as a primary means to store various configurations. The
Proxmox GUI provides you with the ability to manage a cluster, but does not provide direct
access to any configuration files. Any direct changes by advanced users have to be done
through a command-line interface (CLI). Commonly used scenarios, such as adding special
arguments to configuration files, is done through the CLI. In this chapter, we will cover the
following topics:

The Proxmox cluster file system, or pmxcfs
The Proxmox directory structure
Configuration files' location and their functions
Arguments and syntaxes used in configuration files

Proxmox under the Hood Chapter 3

[68]

The Proxmox cluster file system
Proxmox is a cluster-based hypervisor. It is meant to be used with several server nodes. By
using multiple nodes in a cluster, we provide redundancy or high availability to the
platform while increasing uptime. A production virtual environment may have several
dozens to several hundreds of nodes in a cluster. As an administrator, it may not be a
realistic scenario to change configuration files in the cluster one node at a time. Depending
on the number of nodes in a cluster, it may take several hours just to change one small
argument in a configuration file of all the nodes. To save precious time, Proxmox
implemented the clustered filesystem to keep all the configuration files or any other
common files shared by all the nodes in the cluster, in a synchronous state. Its official name
is Proxmox Cluster file system (pmxcfs). The pmxcfs is a database-driven filesystem used
to store configuration files. Any changes made to any files or copied/deleted in this
filesystem get replicated in real time to all the nodes using corosync. The Corosync Cluster
Engine is a group communication system used to implement high availability within an
application. You can learn more about corosync by visiting the link: http:/ ​/​corosync.
github.​io/​corosync/ ​.

Any file added to this filesystem almost instantly gets replicated to all the nodes in the
cluster, thus saving an enormous amount of time for a system administrator.

The pmxcfs filesystem is a database-driven filesystem used to store the
Proxmox cluster configuration files or any other files commonly shared by
all the nodes in the Proxmox cluster. To know more about pmxcfs, visit the
following Proxmox Wiki:
http://pve.proxmox.com/wiki/Proxmox_Cluster_file_system_(pmxcfs)

The pmxcfs filesystem is mounted at the following path:

/etc/pve

All cluster-related files are stored in this folder path.

http://corosync.github.io/corosync/
http://corosync.github.io/corosync/
http://corosync.github.io/corosync/
http://corosync.github.io/corosync/
http://corosync.github.io/corosync/
http://corosync.github.io/corosync/
http://corosync.github.io/corosync/
http://corosync.github.io/corosync/
http://corosync.github.io/corosync/
http://corosync.github.io/corosync/
http://corosync.github.io/corosync/
http://pve.proxmox.com/wiki/Proxmox_Cluster_file_system_(pmxcfs)

Proxmox under the Hood Chapter 3

[69]

Proxmox directory structure
Proxmox comes with a distinct directory structure where all the configuration files and
other necessary files are stored. This makes finding those configuration files in time of need
very easy. The following table shows the location of the files stored and their functions:

Filename/location File function

/etc/pve/datacenter.cfg Proxmox VE data center
configuration file. Used to
change options such as the
default language, keyboard
layout, default console, and so
on.

/etc/pve/corosync.conf Main cluster configuration file.
Prior to Proxmox VE 4.0, this
was known as cluster.conf
and can also be used to change
the vote of a particular node.

/etc/pve/storage.cfg PVE storage configuration file.
This holds all the information
of a local or shared storage
system.

/etc/pve/user.cfg User list and access control
configuration for all users and
groups in the cluster.

/etc/pve/authkey.pub Public key used by the ticket
system.

/etc/pve/ceph.conf When a Ceph cluster is
integrated with Proxmox, this
configuration file is generated
for the Ceph cluster.

/etc/pve/vzdump.cron Cluster-wide backup tasks
that are not specific to a single
node. This file should not be
edited manually. All the
entries are auto created from
the Backup menu on the GUI.

Proxmox under the Hood Chapter 3

[70]

/etc/pve/priv/shadow.cfg Shadow password file that
holds all usernames and their
encrypted passwords.

/etc/pve/priv/authkey.key Private key used by the ticket
system.

/etc/pve/priv/ceph.client.admin.keyring Authentication keyring for a
Ceph cluster. This is only
created when Ceph is
integrated with Proxmox.

/etc/pve/priv/ceph/<storage_id>.keyring Keyring used to attach the
Ceph RBD storage. We will
take a look at Ceph in Chapter
4, Storage Systems.

/etc/pve/firewall/<vmid>.fw Firewall rules for all VMs.

/etc/pve/nodes/<name>/pve-ssl.pem Public SSL key for the web
server. Used to access the
Proxmox web GUI.

/etc/pve/nodes/<name>/priv/pve-ssl.key Private SSL key.

/etc/pve/nodes/<name>/host.fw Firewall rules for the Proxmox
host.

/etc/pve/nodes/<name>/qemu-server/<vmid>.conf Virtual machine configuration
data for KVM VMs.

/etc/pve/nodes/<name>/lxc/ <vmid>.conf Virtual machine configuration
data for LXC containers.

/etc/pve/.version File versions' data to detect file
modifications.

/etc/pve/.members Information nodes that are
members of the cluster.

/etc/pve/.vmlist List of all VMs in the cluster.

/etc/pve/.clusterlog Last 50 entries of the cluster
log.

/etc/pve/.rrd Most recent entries of RRD
data.

Proxmox under the Hood Chapter 3

[71]

Any changes made to these files or any other files inside pmxcfs mounted under the
/etc/pve folder get replicated automatically the moment the changes are made. For this
reason, we will have to take extra care of what we do to these files. For example, if we delete
a .conf file from one node by mistake, it will also be deleted from all the other nodes in the
Proxmox cluster.

A regular manual backup of the /etc/pve folder should be a common
practice in case the cluster needs rebuilding after any disaster or accidental
file deletion/change.

On a regular day-to-day basis, a system administrator will not need to access these files
from the command line since almost all of these are editable from the Proxmox GUI. But
knowing the location of these files and what they hold might save the day when the GUI
becomes inaccessible for whatever reason.

Dissecting the configuration files
We now know where all the important files that hold a Proxmox cluster together are placed.
We will go inside some of these files for a better understanding of what they do and what
command arguments they use. You can use any Linux editor to view/edit these
configuration files. In this book, we will use #nano to view and edit configuration files.

During the learning process, it will be a good idea to make a backup of the configuration
files before editing them. In case something goes wrong, you will be able to replace it with
the original working configuration file. Simply copy the configuration file using the
following command:

 # cp /etc/pve/<config_file> /home/<any_folder>

We can also use the SCP command to back up files to another node:

 # scp /etc/pve/<config_file> <user>@<ip_or_hostname>:/<folder>

Proxmox under the Hood Chapter 3

[72]

The cluster configuration file
The corosync.conf configuration file stores parameters needed for a cluster operation.
Any empty lines or lines starting with # in this configuration file are completely ignored.
The following code is what our corosync.conf file currently looks like in our example
cluster with two Proxmox nodes. The Proxmox cluster configuration file is located under
/etc/pve/corosync.conf:

Proxmox under the Hood Chapter 3

[73]

We are now going to dig into corosync.conf to describe the functions of the parameters.
This configuration file is automatically created when a new Proxmox cluster is created.
There are four segments in this file, which are as follows:

logging { }

nodelist { }

quorum { }

totem { }

logging { }
This segment contains configuration parameters used for logging. According to the
parameters in our example cluster, debugging is off and logs are transferred to syslog. If
we want to turn debugging on and transfer logs to a logfile instead of syslog, our
parameters will appear as follows:

logging {
 debug: on
 to_logfile : yes
 to_syslog : no
 timestamp : on
}
/var/log/<filename>.log {
 daily
 rotate 5
 copytruncate
}

We can also attach a timestamp to all the log entries. Note that if we want to pass logs to
a logfile, we need an additional logfile { } segment along with the logrotate and
copytruncate parameters.

nodelist { }
As the name implies, this segment is where all the member nodes of a Proxmox cluster are
listed. Each node is separated by the node { } subsegment. The following are the three
main parameters as they appear in our cluster configuration file:

nodeid

Proxmox under the Hood Chapter 3

[74]

This parameter shows the numeric order of the member nodes as they get added to the
cluster. This is optional for IPv4 but mandatory when using IPv6. Each nodeid must be
unique in the cluster configuration file. If no nodeid parameter is used when using IPv4,
then the cluster automatically calculates this ID from the 32-bit IPv4 address. With IPv6, this
calculation cannot happen since IPv6 is more than 32 bit.

Warning! Never use nodeid instead of 0 as it is reserved by
corosync.conf.

quorum_votes

This option shows the number of votes that the node must cast to form a quorum. In a
Proxmox cluster, this is no more than one vote per node. Whatever this number is, it should
be equal for all nodes. There are simply no reasons to use anything other than 1.

ring0_addr

This line basically specifies the IP address or the hostname of the node. The actual format of
this option is ringX_addr, where X is the ring number. When multiple network interfaces
are used for redundancy purposes, the redundant ring protocol is implemented in corosync.
Each of the interfaces is assigned a unique ringnumber. This unique ringnumber tells the
interface to connect to the corresponding ring protocol. For example, in our example cluster,
if we use the second interface for redundancy, the node { } segment will appear as
follows:

node {
 nodeid: 2
 quorum_votes: 1
 ring0_addr: 172.16.0.71
 ring1_addr: 192.168.0.71
}

quorum { }
This segment tells the cluster which quorum algorithm to use to form a quorum. As of
corosync version 2.3.5, there is only one provider available, which is votequorum. This
algorithm ensures that there are no split-brain situations and a quorum is formed only
when majority votes are cast. There are no additional options available for this segment.

Proxmox under the Hood Chapter 3

[75]

totem { }
This segment specifies parameters for totem protocols. Corosync consists of the totem
Single Ring Protocol (SRP) and totem Redundant Ring Protocol (RRP). This segment also
includes a { } subsegment interface to specify the bind address and ring number.

When only one interface is used for cluster communication, totem SRP is
implemented. In this protocol, only the ring number 0 is used. When
multiple interfaces are used for redundancy, totem RRP is implemented,
where more than one ring number and interfaces are used.

The following parameters show the name of the Proxmox cluster that is created by Proxmox
during our example cluster creation:

cluster_name: pmx-cluster

We can also see the cluster name from the Datacenter | Summary menu.

config_version: 2

This parameter specifies the version number of the configuration file after each cluster-wide
change, such as adding or removing member nodes. When any changes are made manually
directly to the file, then it is mandatory to increase the version number manually. Failure to
do so will cause the cluster configuration to fail. In that case, the cluster filesystem in
/etc/pve/ may be inaccessible since the node will not be able to start the pve-cluster
service. The config number should only increase incrementally.

ip_version: IPv4

This parameter specifies the version of IP to be used. By default, IPv4 is used. To use
version 6 of IP, simply use the option IPv6.

secauth: on

This parameter tells the cluster to use the SHA1 authentication for encrypting all
transmitted messages. Although this option adds extra overhead for all transmitted
messages, thus reducing the total throughput, it is important to use encryption to protect
the cluster from invaders. By default, this parameter is enabled in Proxmox.

Proxmox under the Hood Chapter 3

[76]

Note that the secauth parameter for corosync is deprecated. It is recommended by the
corosync maintainers to use crypto_hash and crypto_cipher. But as of Proxmox 5,
secauth is still used by default. The following is an example of how the recommended
setting will appear in the totem segment:

totem {
 crypto_hash: sha1
 crypto_cipher: aes256
}

At the time of writing this book, Proxmox developers have not confirmed whether
crypto_hash and crypto_cipher can be safely used instead of secauth.

version: 2

This parameter specifies the version of the configuration. Currently, the only version for
this parameter is 2. This is not the version increment of the configuration file whenever any
changes are made. This number must not be changed manually.

Besides the parameters mentioned earlier, there are a few other parameters available in the
totem segment for various purposes. The following table shows some of these parameters
and their functions:

Parameter Description

rrp_mode Available options: none, active, and passive.
This parameter specifies redundant protocol modes. When there is only one
interface, corosync automatically chooses none. With multiple interfaces, we
can set it to active, which offers a lower latency at the cost of less
performance. We can also set the mode to passive, which offers a significant
performance boost at the cost of CPU usage.

netmtu Available options: 1500 to 8982.
This specifies the MTU of an interface. It is useful when jumbo frames are
used. Linux adds an 18-byte header to the network data packets. So, even
though hardware can support 9,000 MTUs, it is wise to set MTUs to 8,982.
This way, after Linux adds additional headers, the total MTU does not go
beyond 9,000 and hardware will not misbehave. These MTU tips apply to all
situations where jumbo frames are intended.

transport Available options: udp, udpu, and iba.
This specifies the transport protocol. By default, corosync uses UDP. If
InfiniBand and network are used with RDMA, then we can specify iba
instead of udp.

Proxmox under the Hood Chapter 3

[77]

interface { }
This is the subsegment of the totem segment where the information regarding the network
interface is specified. By default, Proxmox only enters the bindnetaddr and ringnumber
parameters in this subsegment:

bindnetaddr : <ip/network_address>

These parameters specify the IP address or network address that corosync should bind to.
This can be any IP address of a node in the cluster. Usually, this is the IP address of the
node where the initial Proxmox cluster creation command was executed:

ringnumber: 0

This parameter specifies a separate ring number for each network interface. A unique
ringnumber for each interface allows unique identification of which ring should use which
interface. For example, with a single interface where totem SRP is applied, there is only one
ring with ringnumber: 0. With dual interfaces and totem RRP applied, there are two rings
with ringnumber: 0 and ringnumber: 1. Note that the ring number must start from 0.

Although the primary use of multiple rings is redundancy, it can be used
for other purposes too, such as connecting nodes in different locations to a
single Proxmox cluster. We can achieve this by implementing VPN, such
as OpenVPN, IPSEC, or tinc. We can create a dedicated network on a
separate VLAN and create a new ring to bind to that network. This way,
corosync will send multicast data on both networks.

There are a few other advanced parameters available that are not used by default. The
following table shows some of these parameters and their functions:

Parameter Description

mcastaddr This specifies a multicast address, which is used by corosync. The address
can be IPv4 or IPv6 when IPV6 is used. This parameter is usually not needed
if the cluster_name parameter has already been used in the
corosync.conf configuration file. But when both are used, mcastaddr will
have a higher priority over cluster_name. By default, the Proxmox cluster
configuration, mcastaddr, is not used.

Proxmox under the Hood Chapter 3

[78]

mcastport This specifies the UDP port number for a multicast address. Corosync uses
two ports for multicasts: one for receiving and the other for sending. We only
need to specify the receiving port since the sending port is automatically
calculated using the formula mcastport - 1. For example, if we specify the
receiving port number 5405, then corosync will use 5404 for sending. This is
very important to note in a multi-cluster environment on the same network.

If we put all the totem parameters we have seen so far together, the corosync.conf for our
example cluster will appear as follows if redundant interfaces have been used:

totem {
 cluster_name: pmx-cluster
 config_version: 4
 ip_version: ipv4
 crypto_hash: sha1
 crypto_cipher: aes256
 version: 2
 rrp_mode: passive
 interface {
 bindnetaddr: 172.16.2.71
 ringnumber: 0
 mcastaddr: 224.1.1.1
 mcastport: 5405
 }
 Interface {
 bindnetaddr: 172.16.20.71
 ringnumber: 1
 mcastaddr: 224.1.1.2
 mcastport: 5408
 }
}

Storage configuration file
This is the configuration file where storage to be used with Proxmox are specified. The
configuration file is located under /etc/pve/storage.cfg. We will take a look at the
different storage systems in Chapter 4, Storage Systems. The following is the possible
content of the storage configuration file with various storage systems supported by
Proxmox:

dir: local
 path /var/lib/vz
 content images,iso,vztmpl,rootdir
 maxfiles 0

Proxmox under the Hood Chapter 3

[79]

nfs: nfs_share_name
 path /mnt/pve/nfs-server
 server 192.168.145.11
 export /mnt/pmxnas01
 options vers=3
 content iso,vztmpl
 maxfiles 1

iscsi: nas-iscsi-01
 target iqn.2015-12.org.example.istgt:pmxtgt01
 portal 192.168.145.11
 content none

lvm: nas-lvm-01
 vgname nas-lvm-01
 base nas-iscsi-01:0.0.0.scsi-330000000391132dd
 shared
 content images

nfs: vm-nfs-01
 path /mnt/pve/vm-nfs-01
 server 192.165.145.11
 export /mnt/pmxnas01
 options vers=3
 content images,vztmpl,backup,rootdir
 maxfiles 1

zfspool: zfs-01
 enable
 pool zfs_pool
 content images, rootdir

Almost all the settings in storage.cfg can be changed from the Proxmox GUI without
using any CLI. Attached storage abides by the following common format in storage.cfg:

storage_type : storage_name
 path </path to folder>
 target <target file name> (for iSCSI)
 portal <server IP address> (for iSCSI)
 vgname <volume group name> (for LVM)
 base <base volume group> (for LVM)
 server <storage server IP address>
 export </shared location on NFS server>
 content <type of files the storage can hold>
 maxfile <maximum number of old backup to keep>

Proxmox under the Hood Chapter 3

[80]

User configuration files
The user.cfg file holds all user, group, and access control information in the cluster and is
located under /etc/pve/user.cfg. It follows the following format to store all
information:

For user information, the format is as follows:

 <type>:<user>@realm:enable:expiry:f_name:l_name:email:comment

For group information, the format is as follows:

 <type>:<group_name>:user@realm:comment

For pool information, the format is as follows:

 <type>:<pool_name>:<assigned_resource>:user@realm:comment

For access control information, the format is as follows:

 <type>:<assigned_resource>:user@realm:comment:<assigned_role>

Based on this format, the following is what our user.cfg file looks like in our example
cluster:

Proxmox under the Hood Chapter 3

[81]

Note that the user.cfg file does not hold any user passwords. This information is stored in
/etc/pve/priv/shadow.cfg in an encrypted form. All the content in this configuration
file can be managed through the Proxmox GUI. Whenever we create a new user/group or
assign roles, the configuration file gets updated. If the GUI becomes inaccessible, this file
can be manually edited.

The password configuration file
The password configuration file is located under /etc/pve/priv/shadow.cfg and stores
all the passwords for users in the cluster. The format is rather simple but the function of this
file is very crucial. The format to store password information is as follows:

<user_name>:<encrypted_password>

Notice that the password file is in a /priv folder inside /etc/pve. Sensitive information,
such as passwords, private authorization keys, and known hosts, are kept in the
/etc/pve/priv folder. When a new user is created through the Proxmox GUI, a new entry
is added here.

KVM virtual machine configuration file
The vmid.conf file stores configuration information for each virtual machine and is located
at /etc/pve/nodes/<name>/qemu-server/<vmid.conf>. The directory structure
divides all VM configuration files into categories based on nodes. For example, the
configuration file for our VM #100 is stored in the following location:

/etc/pve/nodes/pmx-01/qemu-server/100.conf

When we migrate a VM from one node to another, Proxmox just moves the configuration
file to the destination node. If the VM is powered on during the migration, then the entire
memory content of the VM is also migrated to the destination node. For our VM 100, if we
migrate it to pmx-02, the second node in the cluster, then the location of the 100.conf file
will be as follows:

/etc/pve/nodes/pmx-02/qemu-server/100.conf

If a node with virtual machines in it becomes inaccessible, simply moving
the <vm_id>.conf files to a different node will allow access to all the VMs
from a different node. Any files of the folder inside /etc/pve can be seen
from any node in the cluster.

Proxmox under the Hood Chapter 3

[82]

We will now take a look at a <vm_id>.conf file itself to see what makes up a virtual
machine behind the scenes. This configuration file follows a simple option:value format.
The following is the configuration file of our VM #100:

Proxmox under the Hood Chapter 3

[83]

Since our virtual machine also has a snapshot, the configuration also embeds the
specification of the virtual machine as it was during the snapshot. Almost all the options in
this file can be set through the Proxmox GUI under the KVM virtual machine Options
menu tab. Some option values, such as arguments, have to be added through the CLI. The
following table shows some of the possible options. The values can be used as virtual
machine configurations:

Options Description Possible values

args Allows you to pass arguments to a VM. Features such
as sound can be activated using KVM arguments. Refer
to section 2.2.6.2 for more details on arguments used in
the KVM.

See section 2.2.6.2

autostart Auto-restarts a virtual machine after crash. The default
value is 0.

1; 0

balloon Targeted RAM for a VM in MB. Integer number

boot Default boot device c=hdd; d=cd-rom; n=network

bootdisk Enables booting from a specific disk. ide; sata; scsi; virtio

core Number of cores per socket. The default value is 1. Integer number

cpu Emulated CPU types. The default value is kvm64. 486; kvm32; kvm64; qemu32; qemu64;
conroe; haswell; nehalem;
opteron_G1/2/3/4/5; penryn;
sandybridge; westmere; athlon;
core2duo; coreduo; host; pentium;
pentium2; pentium3; phenom

cpuunits This is the CPU weight of the VM. This value is used
by the kernel fair scheduler. The larger the value is, the
more CPU time a VM will get. Note that this value is
relative to the weights of all other running VMs in the
cluster. The default value is 1000.

Integer 0 to 500000

description Notes for VM Plain text

freeze Freezes the CPU at startup 1; 0

hostpci(n) This option allows a VM direct access to the host
hardware. When this option is used, it is not possible to
migrate the VM. Caution should be used for this option
as it is still in the experimental stage. It is not
recommended for a production environment.

HOSTPCIDEVICE

Syntax for HOSTPCIDEVICE is
bus: <pci_device_number>
Get pci_device_number using #lspci

hotplug Enables hotplug for disk and network devices. The
default value is 0.

1; 0

Proxmox under the Hood Chapter 3

[84]

ide(n) Allows the volume to be used as an IDE disk or CD-
ROM. The n in ide(n) is limited to 0 to 3.

[volume=]image_name];
[media=cdrom,disk]; [cyls=c,heads=h,
secs=s,[trans=t]];
[snapshot=on,off];
[cache=none,writethrough,writeback,

unsafe,directsync];
[format=f];[backup=yes|no],
[rerror=ignore, report,stop];
[werror=enospc,ignore,

report,stop]; [aio=native,threads]

kvm Enables/disables the KVM hardware virtualization.
This option disables any hardware acceleration within
a VM. A possible usage scenario is when you are
setting up a nested virtualized cluster. The default
value is 1.

1; 0

lock Enables locking/unlocking of a VM. backup; migrate; rollback; snapshot

memory Allocated amount of RAM for the VM. Integer number from 16 to N

migration_downtime Value in seconds for the maximum tolerated downtime
for migration. The default value is 0.1.

Number 0 to N

migration_speed Value for the maximum speed in MB/s for VM
migrations. Set the value to 0 for no limit. The default
value is 0.

Integer number from 0 to N

name Name for the VM. Text

net(n) Specified network devices.
MODEL=XX:XX:XX:XX:XX:XX,
[bridge=<dev>],[rate=<mbps>],[tag=<vlanid>]

MODEL= e1000, i82551, i82557b,
i82559er, ne2k_isa, ne2k_pci,
pcnet, rtl8139, virtio

onboot Enables/disables VM auto-start during the host node
reboot.

1; 0

sata(n) Allows the volume to be used as a SATA disk or CD-
ROM. N in sata(n) is limited to 0 to 5.

[volume=]volume], [media=cdrom,

disk];
[cyls=c,heads=h,secs=s,trans=t]

[snapshot=on, off]; [cache=none,
writethrough, writeback, unsafe,

directsync]; [format=f]; [backup=yes,
no]; [rerror=ignore, report, top];
[werror=enospc, ignore, report,

stop]; [aio=native, threads]

scsi(n) Allows the volume to be used as an SCSI disk or CD-
ROM. N in scsi(n) is limited to 0 to 13.

[volume=volume], [media=cdrom,

disk];[cyls=c,heads=h,
secs=s,trans=t] [snapshot=on, off];
[cache=none, writethrough,

writeback, unsafe, directsync];
[format=f]; [backup=yes, no];
[rerror=ignore, report, stop];
[werror=enospc, ignore, report,

stop]; [aio=native, threads]

scsihw SCSI controller type. The default value is lsi. lsi; megasas; virtio-scsi-pci

Proxmox under the Hood Chapter 3

[85]

shares This is the value-allocated amount of RAM for
autoballooning. The larger this value is, the more RAM
the VM will get. The value 0 disables this option. The
default value is 1000.

Integer from 0 to 50000

sockets Number of CPU sockets. The default value is 1. Integer from 1 to N

startdate This option sets the initial date of the real-time clock. now | YYYY-MM-DD | YYYY-MM-
DDTHH:MM:SS

startup This option sets the behavior for VM startup and
shutdown. Order is a positive integer number, which
sets the order in which the VMs will start. Shutdown
follows the order value in reverse. The delay of startup
and shutdown can be set through up and down in
seconds.

[order=+ Int], [up=+ Int], [down=+
Int]

tablet Enables/disables the USB tablet device in a VM.
Without this option, if running a lot of console-only
VMs on one host, disabling this feature can save
context switches. The default value is 1.

1; 0

unused(n) Unused volumes in a VM. When a virtual drive is
deleted from a VM, the volume does not get deleted
instantly. Instead, the status changes to
unused:<volume_name>. At a later time, if the volume
is needed, it can be reattached to the VM by changing
the option to ide(n): | scsi(n): | sata(n):.

string

usb(n) Enables pass-through direct access to a USB device. N
can be set to 0 to 4. When this option is used, it is no
longer possible to migrate the VM.

HOSTUSBDEVICE

Syntax for HOSTUSBDEVICE is
<vendor_id:product_id> Get
pci_device_number from command
#lsusb -t

vga VM display type cirrus | std | vmware | qxl

virtio(n) Allows the volume to be used as a VirtIO disk. The n in
virtio(n) is limited to 0 to 15.

[volume=volume]; [media=cdrom,
disk], [cyls=c,heads=h,
secs=s,trans=t]; [snapshot=on, off];
[cache=none, writethrough,

writeback, unsafe, directsync];
[format=f]; [backup=yes, no];
[rerror=ignore, report, stop];
[werror=enospc, ignore, report,

stop]; [aio=native, threads]

Proxmox under the Hood Chapter 3

[86]

Arguments in the KVM configuration file
Arguments in a virtual machine configuration file are a way to extend the capability of the
VM beyond just the default. For example, sound is not enabled for a VM by default. In
order to give a VM the ability to play audio/video, an argument has to be passed through
the VM configuration file. The following are some examples of arguments that can be used
in a Proxmox VM configuration file. Arguments can be added in the following format:

args: -<device_arguments_1> -<device_arguments_2>
ballon: 512
bootdisk: virtio0
cores: 1
ide2: none,media=cdrom
. . . .
. . . .

Enable a serial device in a VM using the following code:

args: -serial /dev/ttyS0

Enable sound in a Windows XP VM using the following code:

args: -device AC97,addr=0x18

Enable sound in Windows 7 and later VMs using the following code:

args -device intel-hda,id=sound5,bus=pci.0,addr=0x18 -device had-
micro,id=sound5-codec0,bus=sound5.0,cad=0 -device had-duplex,id=sound5-
codec1,bus=sound5.0,cad=1

Enable UUID in a VM using this line of code:

args -uuid fl234a93-20d32-2398-129032ds-2322

Enable support for aio=native in a VM:

args: -drive file=/dev/VGGRP/VOL,if=virtio,index=1,cache=none,aio=native

Proxmox under the Hood Chapter 3

[87]

LXC container configuration file
From Proxmox VE 4.0, OpenVZ has been dropped in favor of LXC containers. LXC is
derived from OpenVZ for the mainline kernel. One of the main advantages of LXC is that it
can be used on top of the standard Linux kernel without needing a special kernel, as is the
case for OpenVZ.

When using LXC, keep in mind that live migration of a container is not
possible as of Proxmox VE 5.0. The container will need to be powered off
to commit offline migration.

The following is the LXC configuration file of the container #101 in our example cluster,
which is located in /etc/pve/lxc/101.conf:

LXC container configuration is much simpler than OpenVZ. As with OpenVZ, there are no
User Bean Counters in LXCs. It is worth noting here that if your existing cluster is pre-
Proxmox VE 5 and has OpenVZ containers running, they cannot be seamlessly upgraded to
LXCs during the Proxmox upgrade. All OpenVZ containers must be powered off, commit a
full backup, and then restored in the upgraded Proxmox VE 5. We will take a look at the
upgrade process in detail later in this book in Chapter 14, Updating/Upgrading Proxmox.

Like a KVM configuration file, LXC also uses an option and value format of the
configuration in its file. Parameters added by default during the LXC creation in Proxmox
are mostly self explanatory. Most of these parameters for LXC can be changed through the
Proxmox GUI. LXC itself has got quite a few configuration parameters, which cannot be
controlled through the GUI, but they can be added manually through the CLI, depending
on the requirement. A comprehensive list of all the possible configuration parameters for
LXC can be found at the link: http:/ ​/​man7. ​org/ ​linux/ ​man- ​pages/ ​man5/ ​lxc. ​container.
conf.​5.​html.

http://man7.org/linux/man-pages/man5/lxc.container.conf.5.html
http://man7.org/linux/man-pages/man5/lxc.container.conf.5.html
http://man7.org/linux/man-pages/man5/lxc.container.conf.5.html
http://man7.org/linux/man-pages/man5/lxc.container.conf.5.html
http://man7.org/linux/man-pages/man5/lxc.container.conf.5.html
http://man7.org/linux/man-pages/man5/lxc.container.conf.5.html
http://man7.org/linux/man-pages/man5/lxc.container.conf.5.html
http://man7.org/linux/man-pages/man5/lxc.container.conf.5.html
http://man7.org/linux/man-pages/man5/lxc.container.conf.5.html
http://man7.org/linux/man-pages/man5/lxc.container.conf.5.html
http://man7.org/linux/man-pages/man5/lxc.container.conf.5.html
http://man7.org/linux/man-pages/man5/lxc.container.conf.5.html
http://man7.org/linux/man-pages/man5/lxc.container.conf.5.html
http://man7.org/linux/man-pages/man5/lxc.container.conf.5.html
http://man7.org/linux/man-pages/man5/lxc.container.conf.5.html
http://man7.org/linux/man-pages/man5/lxc.container.conf.5.html
http://man7.org/linux/man-pages/man5/lxc.container.conf.5.html
http://man7.org/linux/man-pages/man5/lxc.container.conf.5.html
http://man7.org/linux/man-pages/man5/lxc.container.conf.5.html
http://man7.org/linux/man-pages/man5/lxc.container.conf.5.html
http://man7.org/linux/man-pages/man5/lxc.container.conf.5.html
http://man7.org/linux/man-pages/man5/lxc.container.conf.5.html
http://man7.org/linux/man-pages/man5/lxc.container.conf.5.html
http://man7.org/linux/man-pages/man5/lxc.container.conf.5.html

Proxmox under the Hood Chapter 3

[88]

Version configuration file
The version configuration file shows the version numbers of configuration files in the
cluster and is located under /etc/pve/.version. Every time a configuration file is edited,
the version number increments in the .version file. The following is the .version file in
our cluster at this moment:

There are no manual configurations or editing required in this file.

Proxmox under the Hood Chapter 3

[89]

Member nodes
Located under /etc/pve/.members, the member node file shows all the member nodes
that are part of the Proxmox cluster. It is a great way to see the cluster status when the
Proxmox GUI becomes inaccessible for any reason. The following is the .members file in
our basic cluster:

"nodename": "pm4-2"

The nodename section shows the current node where the .members file is being accessed:

"version": 4

The .members file has its own version numbering system. Like the .version file, every
time .members is changed, the version increases incrementally. For example, when a node
is added or removed from the cluster, the version number moves upward:

"cluster": { "name": "pmx-cluster", "version": 2, "nodes": 2, "quorate": 1
},

The previous code shows the cluster information, such as the cluster name, cluster version,
number of member nodes, and number of votes (quorate) needed to form a quorum.

"nodelist": { }

Nodes mentioned in the node list section provide information about each node, such as the
ID, online/offline status, and IP address.

Proxmox under the Hood Chapter 3

[90]

Virtual machine list file
Located under /etc/pve/.vmlist, the virtual machine list file stores a list of all the virtual
machines within the Proxmox cluster. The .vmlist file uses the following format to store
the list:

"<vmid>": { "node": "<nodename>", "type": "<vm_type>", "version": <int> }

We have two virtual machines and one template in our basic cluster. The following
screenshot shows the information stored in the .vmlist file:

This list allows you another way to view the virtual machines list in the cluster in all the
nodes. We can have a hard copy of this file if disaster strikes, making the cluster
inaccessible through GUI, or we need to rebuild a virtual environment.

The cluster log file
This is a log file for the cluster itself and is located under /etc/pve/.clusterlog. It
mostly maintains a log of login authentication of users.

Proxmox under the Hood Chapter 3

[91]

Ceph configuration files
Ceph is a kind of a distributed object and file storage system, which fully integrates with
Proxmox. Out of the box, Proxmox comes with the Ceph cluster management option
through the GUI and a whole array of features to make the integration as seamless as
possible. We will dive deep into Ceph in Chapter 4, Storage Systems. Ceph can be installed
on its own hardware using operating systems such as Ubuntu, or it can coexist with
Proxmox on the same node. Whether it's coexisting or on its own cluster, Proxmox nodes
need access to the Ceph configuration file to connect. The configuration file is located in
/etc/pve/ceph.conf for the Proxmox+Ceph coexisting node. For non-coexisting Proxmox
nodes, the file needs to be stored in /etc/ceph/ceph.conf. In the coexisting node,
Proxmox creates a symbolic link of the Ceph configuration file in /etc/ceph/ceph.conf.

Besides the configuration file, Ceph also uses authentication keys, which are stored in the
following directories:

/etc/pve/priv/ceph.client.admin.keyring
/etc/pve/priv/ceph.mon.keyring
/etc/pve/priv/ceph/<rbd_storage_id>.keyring

In order to connect a Ceph RBD storage, Proxmox requires a separate keyring. The
<rbd_storage_id>.keyring is simply a copied and renamed version of
ceph.client.admin.keyring. Without this keyring, Proxmox will not be able to connect
to Ceph. We will look at details of Ceph in Chapter 5, Installing and Configuring Ceph.

Firewall configuration file
As of Proxmox 5, a fully functional firewall is integrated with a Proxmox cluster. It is very
powerful and comes with a granular customization down to a single virtual machine.
Firewall rules can be created separately for a cluster, node, and virtual machine. The
following table shows the firewall rules' file location:

Cluster-wide firewall rules /etc/pve/firewall/cluster.fw

Node firewall rules /etc/pve/nodes/<node_id>/host.fw

VM/CT firewall rules /etc/pve/firewall/cluster.fw

All the firewall rules can be managed through the Proxmox GUI firewall menu without
editing using the command line. We will take a look at the firewall in detail later in this
book in Chapter 9, The Proxmox VE Firewall.

Proxmox under the Hood Chapter 3

[92]

It is worth mentioning that the Proxmox firewall should be not a substitute for the main
gateway firewall where the internet enters the facility. There should be a dedicated firewall
between the WAN and the local network. The Proxmox firewall enhances security by
allowing you to prevent inter-VM communication and by fine-tuning the incoming and
outgoing network traffic.

Summary
In this chapter, we looked at the location of the important configuration files needed to run
a Proxmox cluster. We also looked at the configuration files from inside to have a better
understanding of the parameters used and other possible values for different parameters.
As mentioned earlier, most of these configuration files can be changed via the Proxmox
GUI. But when the GUI becomes inaccessible for any reason, knowing where these files are
located can save a tremendous amount of time by accessing them through the CLI.

In the next chapter, we will take a look at the various storage systems that can be used with
Proxmox and the different types of disk images and their use cases.

4
Storage Systems

A storage system is a medium to store data for simultaneous access by multiple devices or
nodes in a network. As server and desktop virtualization becomes the norm, a proper,
stable storage system today is much more critical for a virtual environment. In terms of
Proxmox, a storage system is where virtual disk images are stored for both KVM and
container-based virtual machines.

Although a Proxmox cluster can function fully with Direct Attached Storage (DAS) or a
local storage system in the same Proxmox node, a shared storage system has many benefits
in a production environment, such as increased manageability, seamless storage expansion,
and redundancy, just to name a few. In this chapter, we will cover the following topics:

Local versus shared storage
Virtual disk image types
Storage types supported by Proxmox
Commercial and free shared storage options
FreeNAS as a low-cost shared storage option

Local or shared, a storage system is a vital component of a Proxmox cluster. A storage
system is where all the virtual machines reside. Therefore, a deeper understanding of
different storage systems will allow an administrator to properly plan storage requirements
for any cluster environment.

Storage Systems Chapter 4

[94]

Local storage versus shared storage
Shared storage is not absolutely necessary in a Proxmox cluster environment, but without a
doubt, it makes storage management a simpler task. In a small business environment, it
may be adequate not to have 24/7 uptime and 100% reliability, so a local storage system will
suffice. In most enterprise virtual environments with critical data, shared storage is the only
logical choice due to the benefits it brings to the whole cluster operation. The following are
considered benefits of using shared storage:

Live migration of a virtual machine
Seamless expansion of multi-node storage space
Centralized backup
Multilevel data tiering
Central storage management

Live migration of a virtual machine
This is probably one of the important sought-after reasons to go for a shared storage system.
Live migration is when a virtual machine can be moved to a different node without
shutting it down first. Offline migration is when the virtual machine is powered off prior
to migration. The hardware and operating systems of Proxmox nodes need updates,
patches, and replacements occasionally. Some updates require an immediate reboot while
some require none at all. The primary function of Proxmox nodes in a cluster is to run
virtual machines. When a node needs to be rebooted, all the running VMs must be stopped
or migrated to other nodes. Then, migrate them back to the original node after the reboot
cycle is complete. In Proxmox, a powered-on VM cannot be migrated using live migration
without powering it down first if the VM is on the local disk of the node in question. If a
total Proxmox node failure occurs for any reason, all the VMs stored in that node will be
completely unavailable until the node is fixed or replaced. This is because VMs cannot be
accessed to be moved to a different node until the issue node is powered up.

In most cases, shutting down all the VMs just to reboot the host node is not an option. This
causes too much downtime depending on the number of VMs the node handles. In order to
migrate locally stored VMs, they must be stopped and then migration should be initiated
from the Proxmox GUI. Migration from one local storage to another local storage takes a
long time, depending on the size of the VM, since Proxmox moves an entire image file using
rsync to relocate the VM to another node. Let's take a look at the following diagram of a
cluster with 40 locally stored virtual machines with 10 on each of the four Proxmox nodes:

Storage Systems Chapter 4

[95]

In the preceding overly simplified diagram, there are four Proxmox nodes with 10 virtual
machines on each. If node 01 needs to reboot to apply an update or hardware upgrade, all
the 10 virtual machines have to be stopped, the node needs to be rebooted, and then all the
virtual machines must be powered up. If node 01 fails completely, then all these 10 virtual
machines will be inaccessible until node 01 is back on again.

So clearly, a cluster setup with local storage for virtual machines can cause unwanted
downtime when migration is needed. Now, let's take a look at the following diagram where
four Proxmox nodes with 40 virtual machines are stored on a shared storage system:

Storage Systems Chapter 4

[96]

In the preceding diagram, all the 40 virtual machines are stored on a shared storage system.
The Proxmox node only holds the configuration files for each virtual machine. In this
scenario, if node 01 needs to be rebooted due to a security patch or update, all the virtual
machines can be simply migrated to another node without powering down a single virtual
machine. A virtual machine user will never notice that their machine has actually moved to
a different node. If a total Proxmox node failure occurs, the virtual machine configuration
file can simply be manually moved from /etc/pve/nodes/node01/qemu-
server/<vmid>.conf to /etc/pve/nodes/node02/qemu-server/<vmid>.conf.

We can also leverage another feature in Proxmox known as high
availability to automate the VM configuration file to move during node
failure. Refer to Chapter 10, Proxmox High Availability, to learn about this
feature.

Since all the virtual machine configuration files are in a Proxmox clustered file system
(pmxcfs), they can be accessed from any node. Refer to Chapter 3, Proxmox under the Hood,
for details on the pmxcfs. With virtual machine image files on shared storage, Proxmox
migration does not have to move all the image files using rsync from one node to another,
which allows much faster virtual machine migration.

The rsync is an open source program and network protocol for Unix-based
systems. It provides nonencrypted or encrypted incremental file transfers
from one location to another.

When live-migrating a VM, keep in mind that the more memory (RAM) allocated to the
VM, the longer it will take to live-migrate a powered-on virtual machine since the migration
process will need to copy the entire memory contents. Failure to do so may cause data
corruption since the data in memory may not have been written to the disk image.

It should be noted that shared storage can cause a single point of failure if a single node-
based shared storage solution is set up, such as FreeNAS or NAS4Free without high
availability configured. Using multinode or distributed shared storage such as Ceph,
Gluster, or DRBD, the single point of failure can be eliminated. On a single-node shared
storage, all virtual machines are stored on one node. If node failure occurs, the storage will
become inaccessible by a Proxmox cluster, thus rendering all the running virtual machines
unusable.

As of Proxmox VE 5.0, LXC containers cannot be live-migrated. They will
need to be powered off to commit offline migration. KVM VMs can be
live-migrated without shutting down.

Storage Systems Chapter 4

[97]

Seamless expansion of multinode storage space
Digital data is growing faster than ever before in our modern 24/7 digitally connected
world. The growth has been exponential since the introduction of virtualization. Since it is
much easier to set up a virtual server at a moment's notice, an administrator can simply
clone a virtual server template, and within minutes, a new virtual server is up and running
while consuming storage space. If left unchecked, this regular creating and retiring of
virtual machines can force a company to grow out of available storage space. A distributed
shared storage system is designed keeping this very specific requirement in mind.

In an enterprise environment, storage space should increase on demand without shutting
down or interrupting critical nodes or virtual machines. Using a multinode or distributed
shared storage system, virtual machines can now go beyond few-node local clusters to
scattered multiple nodes spanned across geographical regions. For example, Ceph or
Gluster can span across several racks and comprise well over several petabytes of usable
storage space. Simply add a new node with a full bay of drives and then tell the storage
cluster to recognize the new node to increase storage space for the entire cluster. Since
shared storage is separated from the virtual machine host nodes, storage can be increased or
decreased without disturbing any running virtual machines. In Chapter 5, Installing and
Configuring Ceph, we will see how we can integrate Ceph into a Proxmox cluster.

Centralized backup
Shared storage makes centralized backup possible by allowing each virtual machine host
node to create a backup in one central location. This helps a backup manager or an
administrator to implement a solid backup plan and manage the existing backups. Since a
Proxmox node failure will not take the shared storage system down, virtual machines can
be easily restored to a new node to reduce downtime.

Always use a separate node for backup purposes. It is not a wise practice
to store both virtual machines and their backups on the same node.

Storage Systems Chapter 4

[98]

Multilevel data tiering
Data tiering is a concept where different files can be stored on different storage pools based
on their performance requirements. For example, a virtual file server can provide very fast
service if its VM is stored in an SSD storage pool, whereas a virtual backup server can be
stored on slower HDD storage since backup files are not frequently accessed and thus do
not require very fast I/O. Tiering can be set up using different shared storage nodes with
different performance levels. It can also be set up on the same node by assigning volumes or
pools to specific sets of drives.

Central storage management
By separating shared storage clusters from primary Proxmox clusters, we can manage two
clusters without them interfering with each other. Since shared storage systems can be set
up with separate nodes and physical switches, managing them based on different
authorizations and permissions becomes an easier task. NAS, SAN, and other types of
shared storage solutions come with their own management programs from where an
administrator or operator can check storage cluster health, disk status, free space, and so on.
The Ceph storage is configured via CLI, but Proxmox has integrated a great deal of Ceph
management options within the Proxmox GUI, which makes Ceph cluster management
much easier. Using the API, Proxmox can now collect the Ceph cluster data and display it
through the Proxmox GUI, as shown in the following screenshot:

Storage Systems Chapter 4

[99]

Other NAS solutions such as FreeNAS, OpenMediaVault, and NAS4Free also have a GUI
that simplifies management. The following screenshot is an example of the hard drive
status from a FreeNAS GUI window:

Storage Systems Chapter 4

[100]

Local and shared storage comparison
The following table is a comparison of both the local and shared storage for a quick
reference:

Features Local storage Shared storage

VM live
migration

No Yes

High
availability

No Yes, when used in distributed shared storage

Cost Lower Significantly higher

I/O
performance

Native disk drive speed Slower than the native disk drive speed

Skill
requirements

No special storage skills required Must be skilled in the shared storage option used

Expandability Limited to available drive bays of a node Expandable over multiple nodes or racks when multinode or
distributed shared storage is used

Maintenance
complexity

Virtually maintenance free Storage nodes or clusters require regular monitoring

A virtual disk image
A virtual disk image is a file or group of files in which a virtual machine stores its data. In
Proxmox, a VM configuration file can be recreated and used to attach a disk image. But if
the image itself is lost, it can only be restored from a backup. There are different types of
virtual disk image formats available to be used with a virtual machine. It is essential to
know the different types of image formats in order to have an optimally performing VM.
Knowing the disk images also helps prevent the premature shortage of space, which may
occur by over-provisioning virtual disks.

Supported image formats
Proxmox supports the .raw, .qcow2, and .vmdk virtual disk formats. Each format has its
own set of strengths and weaknesses. The image format is usually chosen based on the
function of the virtual machine, storage system in use, performance requirement, and
available budget. The following screenshot shows the menu where we can choose an image
type during virtual disk creation through the GUI:

Storage Systems Chapter 4

[101]

The following table is a brief summary of the different image formats and their possible
usage:

Image type Storage supported Strength Weakness

.qcow2 NFS and directory Allows dynamic virtual storage of image files.
Stable and secure.
Most feature rich among image types.

Complex file formats with additional software
layers.
High I/O overhead.

.raw LVM, RBD, iSCSI, and
directory

No additional software layer. Direct access to
image files.
Stable, secure, and fastest.

Fixed virtual image only.
Cannot be used to store dynamic images.
VM takes longer to back up due to the size of
image files.

.vmdk NFS and directory Works exceptionally well with the VMware
infrastructure.
Allows dynamic virtual storage of image files.

Additional software layer, thus slower
performance.
Not fully tested with Proxmox.

Proxmox is very forgiving with setting up virtual machines with the
wrong image format. You can always convert these image types from one
format to another. Conversion can be done from both the CLI and GUI.
Virtual disk image conversion is explained later in this chapter.

Storage Systems Chapter 4

[102]

The .qcow2 images
The .qcow2 type is a very stable VM image format. Proxmox fully supports this file format.
A VM disk created using .qcow2 is much smaller since by default it creates thin-
provisioned disk images. For example, an Ubuntu VM created with 50 GB storage space
may have an image file with a size around 1 GB. As a user stores data in the VM, this image
file will grow gradually. The .qcow2 image format allows an administrator to over-
provision VMs with the .qcow2 disk image file. If not monitored regularly, the shared
storage will run out of space to accommodate all the growing virtual image files. Available
storage space should be regularly monitored in such an environment. It is a good practice to
add additional storage space when the overall storage space consumption reaches around
80%.

Thin provisioning is when the virtual disk image file does not preallocate
all the blocks, thus keeping the size of the image file to only what we want.
As more data is stored in the virtual machine, the thin-provisioned image
file grows until it reaches the maximum size allocated. Thick provisioning,
on the other hand, is when the virtual disk image file preallocates all the
blocks, thus creating an image file that is exactly the size set when creating
it.

The .qcow2 format also has a very high I/O overhead due to its additional software layer.
Thus, it is a bad choice of image format for a VM such as a database server. Any data being
read or written into the image format goes through the .qcow2 software layer, which
increases the I/O, making it slower. A VM backup created with a .qcow2 image can only be
restored to an NFS or local directory.

When budget is the main concern and storage space is very limited, .qcow2 is an excellent
choice. This image type supports KVM live snapshots to preserve states of virtual machines.

The .raw image type
The .raw image type is also a very stable and mature VM image format. Its primary
strength lies in performance. There is no additional software layer for data to go through. A
VM has direct pass-through access to the .raw file, which makes it much faster. Also, there
is no software component attached to it, so it is much less problem prone. The .raw format
can only create a fixed-size or thick-provisioned VM image file. For example, an Ubuntu
VM created with 50 GB storage space will have a 50 GB image file. This helps an
administrator to know exactly how much storage is in use, so there is no chance of an
uncontrolled out-of-storage situation.

Storage Systems Chapter 4

[103]

The .raw type is the preferred file format for all Proxmox VMs. A .raw image format VM
can be restored to just about any storage type. In a virtual environment, additional virtual
disk image files can be added to a virtual machine at any time. So it is not necessary to
initially allocate a larger-size .raw virtual disk image file with possible future growth in
mind. The VM can start with a smaller .raw image file and add more disk images as
needed. For example, a VM with 50 GB data starts with an 80 GB .raw image file. Then,
increase the size of the disk image or add more virtual disk images as the need arises. The
concept is much like adding new hard drives to a server to increase overall space.

Since all the .raw disk image files are preallocated, there are no risks of over-provisioning
beyond the total available storage space. KVM live snapshots are also supported by the
.raw image format. There are some shared storage solutions that only support the .raw
disk image. Ceph RBD is one example. As of Proxmox VE 4.1, we can only store the .raw
virtual disk image on Ceph block devices. But the Ceph FileSystem (CephFS) supports all
the virtual disk images. CephFS is one of the three storage types supported on the Ceph
platform. Currently, there are no direct storage plugins for CephFS in Proxmox, only for
RBD. But we can connect CephFS to Proxmox as an NFS share.

The .vmdk image type
The .vmdk image format is very common in the VMware infrastructure. The main
advantage of Proxmox supporting .vmdk is the ease of VM migration from VMware to a
Proxmox cluster. A VM created in VMware with the .vmdk image format can easily be
configured to be used in a Proxmox cluster and converted. There are no benefits to keeping
a virtual disk image file in the .vmdk format, except during a transitional period, such as
converting virtual machines from a VMware infrastructure.

Storage Systems Chapter 4

[104]

Virtual device types
Virtual device types emulate the bus or device nature of physical drives. Proxmox allows
quite a few additional virtual drives to be added to a VM. The following table shows the
bus types supported in Proxmox and the maximum number of allowed disk devices per
VM by Proxmox:

Bus/device type Maximum allowed

IDE 3

SATA 5

VirtIO 15

SCSI 13

Out of four supported bus types, the VirtIO bus type gives the maximum performance in
almost all situations. VirtIO disk images are recognized by Linux without any additional
work during OS installation. However, when installing Windows in a VM, VirtIO drives are
not recognized. Additional VirtIO drives need to be added at the time of Windows
installation. We will look into best practices for using the VirtIO bus type with Windows
OSes later in this chapter.

Managing disk images
A Proxmox virtual image file can be managed from both the WebGUI and CLI. The
WebGUI allows the administrator to use the add, resize (increase only), move, throttling,
and delete options, as shown in the following screenshot:

Storage Systems Chapter 4

[105]

To make any changes to a virtual disk image file, the image must be selected first from the
Hardware tab, as shown in the preceding screenshot. Virtual machine image files can also
be manipulated using CLI commands. The following table shows a few examples of the
most common commands used to delete, convert, and resize an image file:

Command Function

#qemu-img create -f <type> -o <filename> <size>
#qemu-img create -f raw -o test.raw size=1024M

Creates an image file

#qemu-img convert <source> -O <type> <destination>
#qemu-img convert test.vmdk -O qcow2 test.qcow2

Converts an image file

#qemu-img resize <filename> <+|-><size>
#qemu-img resize test.qcow2 +1024M

Resizes an image file

Resizing a virtual disk image
The Resize disk option only supports increasing the size of the virtual disk image file. It has
no shrink function. The Proxmox Resize disk option only adjusts the size of the virtual disk
image file. After any resizing, the partition must be adjusted from inside the VM. The safest
way to resize partitions is to boot a Linux-based virtual machine with a partitioning ISO
image, such as GParted (http://gparted.org/download.php), and then resize the partitions
using the GParted graphical interface. It is also possible to perform an online partition
resizing while the virtual machine is powered on. Resizing a virtual disk image file involves
the following three steps:

Resize virtual disk image file in Proxmox:1.
From GUI: Select the virtual disk, and then click on Resize disk.
From CLI: Run the following command:

 # qm resize <vm_id> <virtual_disk> +<size>G

Resize the partition of the virtual disk image file from inside the VM:2.
For Windows VMs: Resize the disk by going to Computer
Management under Administrative Tools.
For Linux VMs with RAW partitions: Run the following command:

 # cfdisk <disk_image>

http://gparted.org/download.php

Storage Systems Chapter 4

[106]

For Linux VMs with LVM partitions: Run the following command:

 # cfdisk </dev/XXX/disk_image>

For Linux VMs with QCOW2 partitions: Run the following
commands:

 # apt-get install nbd-client
 # qemu-nbd --connect /dev/nbd0 <disk_image>
 # cfdisk /dev/nbd0
 # qemu-nbd -d /dev/nbd0

Resize the filesystem in the partition of the virtual disk image file:3.
For a Linux client with LVM: Run the following commands:

 # pvscan (find PV name)
 # pvresize /dev/xxx (/dev/xxx found from pvscan)
 # lvscan (find LVname)
 # lvresize -L+<size>G /dev/xxx/lv_<disk>

To use 100% free space: Run the following commands:

 # lvresize -l +100%FREE /dev/xxx/lv_<disk>
 # resize2fs /dev/xxx/lv_<disk> (resize filesystem)

Steps 2 and 3 are necessary only if online resizing is done without shutting
down a VM. If GParted or another bootable partitioning medium is used,
then only step 1 is needed before booting the VM with an ISO.

Moving a virtual disk image
Move disk allows the image file to be moved to a different storage or converted to a
different image type:

Storage Systems Chapter 4

[107]

In the Move disk option menu, just select the Target Storage and Format type, and then
click on Move disk to move the image file. Moving can be done live without shutting down
the VM.

The Format type in the Move disk option will be greyed out if the
destination storage only supports one image format type. In the preceding
screenshot, ssd-ceph-01 is an RBD storage in a Ceph pool. Since RBD
only supports the RAW format, the format type has been greyed out
automatically.

Clicking on Delete source will delete the source image file after the moving is complete.

Note that if the virtual machine has any snapshots, Proxmox will not be able to delete the
source file automatically. In such cases, the disk image has to be manually deleted after the
snapshots are removed. The source image will be listed as Unused disk 0, as shown in the
following screenshot, after the moving is done for a disk image with snapshots:

Storage Systems Chapter 4

[108]

Throttling a virtual disk image
Proxmox allows throttling or setting a limit on the read/write speed and input/output
operations per second (IOPS) for each virtual disk image. By default, there are no set limits.
Each disk image will try to read and write at the maximum speed achievable in the storage
where the disk image is being stored. For example, if a disk image is stored on a local
storage, it will try to perform read and write operations at about 110 MB/s since that is the
theoretical limit of a SATA drive. This performance will vary in different storage options. In
a multi-tenant or large environment, if all the disk images are not throttled without any
limit, this may put pressure on the network and/or storage bandwidth. By throttling, we can
control the bandwidth that each disk image can utilize. The Disk Throttle option is
available on the Hardware tab of a VM. The following screenshot shows the Disk Throttle
dialog box with the option to set limits:

When it comes to disk throttling, there's no one-size-fits-all limit. The set limit is going to
vastly vary for different storage used in the cluster environment and the amount of load
each VM carries. Depending on the type of storage used, it may be necessary to just set
write or read, or both, limits. For example, a Ceph storage cluster with an SSD journal may
have a much higher write speed than the read speed. So throttling a VM with a higher read
limit while setting a lower write limit may be a viable option.

Storage Systems Chapter 4

[109]

As mentioned earlier, we can set a limit based on MB/s or OP/s. Setting the MB/s limit is
much simpler since we can quantify the read/write speed of a disk drive or network in
megabytes much more easily. For example, a standard SATA drive can achieve a theoretical
speed of 115 MB/s while a gigabit network can achieve about 100 MB/s. Knowing the
performance in IOPS or OP/s requires some extra steps. In some storage systems, we can
integrate some forms of monitoring, which can present us the IOPS data in real time. For
others, we need to calculate the IOPS data to know the performance matrix of the storage
system used. The complete details of the IOPS calculation are beyond the scope of this book.
But the following guidelines should serve as a starting point to calculate the OP/s of
different storage devices:

OP/s for a single 7200-RPM SATA disk:

IOPS = 1/(avg. latency in seconds + avg. seek time in seconds)

Based on the previous formula, we can calculate IOPS of a standard SSD device. To get the
average latency and seek time of a device, we can use the Linux tool ioping. It is not
installed in Proxmox by default. We can install it using the following command:

apt-get install ioping

The ioping tool is similar to the iperf command but for disk drives. The following
command will show the IO latency of our example SSD device:

ioping /dev/sda

The following screenshot shows that the result of ioping for average latency is 1.79
milliseconds or 0.00179 seconds:

To get the average seek time of a device, we need to run the following ioping command:

ioping -R /dev/sda

Storage Systems Chapter 4

[110]

The following screenshot shows that the result of ioping for average seek time is 133
microseconds or 0.000133 seconds:

Using the gathered results, we can calculate the IOPS or OP/s of the SSD device, as follows:

IOPS = 1 / (0.00179 + 0.000133) = 520

If we know the maximum IOPS a storage medium can provide, we can tweak each VM with
OP/s throttling to prevent IO issues in the cluster. As of Proxmox VE 4.1, we cannot set a
cluster-wide throttling limit. Each disk image needs manual throttling separately.

Caching a virtual disk image
Caching a virtual disk image provides performance and in some instances protection
against an ungraceful VM shutdown. Not all caching is safe to use. For optimum VM
performance, it is important to be aware of the various caching offered in Proxmox. This
option is available under the VM Hardware tab in the disk image creation or edit dialog
box. The following screenshot shows the disk image's edit dialog box with the caching
drop-down menu for the .raw disk image of our example VM:

Storage Systems Chapter 4

[111]

As of Proxmox VE 5.0, the following caching options are available:

Cache option Description

Direct sync In this cache option, the Proxmox host does not do any caching,
but a VM disk image uses the write-through cache. In this cache,
writes are only acknowledged when data has been committed to
the storage device. Direct sync is recommended for VMs that do
not send flushes when required. This is a safer cache as data is not
lost during a power failure but it is also slower.

Write through In this cache option, the Proxmox host page cache is enabled
while the VM disk write cache is disabled. This cache provides
good read performance but slow write performance due to the
write cache being disabled. This is a safer cache as it ensures data
integrity. This cache is recommended for local or direct attached
storage.

Write back In this cache option, both read and write caching is done by the
host. Writes are acknowledged by the VM disk as completed as
soon as they are committed to the host cache regardless of
whether they have been committed to storage or not. Data loss
will occur for VMs in this cache.

Write back (unsafe) This cache is the same as Write back except that all flushes are
completely ignored by the guest VM. This is the fastest cache
although the most unsafe. This cache should never be used in a
production cluster. Usually, this cache is used to speed up OS
installation in a VM. After the VM installation, this cache should
be disabled and reverted to a different safer cache option.

No cache This is the default caching option in Proxmox. In this option, no
caching occurs at the host level, but the guest VM does write-back
caching. The VM disk directly receives a write acknowledgment
from the storage device in this cache option. Data can be lost in
this cache during an abrupt host shutdown due to a power
failure.

Storage Systems Chapter 4

[112]

Not all cache types will provide the same performance in all virtual environments. Every
VM's workload is different. So choosing various cache types and observing the performance
of the VM is necessary to find out which caching works best for a particular VM.

VirtIO bus type for Windows VMs
VirtIO disk images are automatically recognized by Linux VMs since all Linux flavors come
equipped with VirtIO drivers. Windows operating systems, however, do not. We can follow
two methods to use the VirtIO disk type with Windows.

First, download the VirtIO drivers for Windows in ISO format from the following link:

https:/​/​fedoraproject. ​org/ ​wiki/ ​Windows_ ​Virtio_ ​Drivers

After downloading the ISO image file, simply upload it to a storage attached to Proxmox so
we can make it available to any VM. Note that the ISO image holds drivers for not just the
VirtIO disk device but also the VirtIO network interface.

Installing VirtIO drivers during Windows installation
In the first method, we can load the VirtIO drivers during Windows installation through the
following steps:

Add two CD/DVD drives when creating the Windows VM. The first drive is to1.
load the Windows installer and the other one to load the VirtIO ISO image.

Start Windows installation and click on Load driver as shown in the following2.
screenshot:

https://fedoraproject.org/wiki/Windows_Virtio_Drivers
https://fedoraproject.org/wiki/Windows_Virtio_Drivers
https://fedoraproject.org/wiki/Windows_Virtio_Drivers
https://fedoraproject.org/wiki/Windows_Virtio_Drivers
https://fedoraproject.org/wiki/Windows_Virtio_Drivers
https://fedoraproject.org/wiki/Windows_Virtio_Drivers
https://fedoraproject.org/wiki/Windows_Virtio_Drivers
https://fedoraproject.org/wiki/Windows_Virtio_Drivers
https://fedoraproject.org/wiki/Windows_Virtio_Drivers
https://fedoraproject.org/wiki/Windows_Virtio_Drivers
https://fedoraproject.org/wiki/Windows_Virtio_Drivers
https://fedoraproject.org/wiki/Windows_Virtio_Drivers
https://fedoraproject.org/wiki/Windows_Virtio_Drivers
https://fedoraproject.org/wiki/Windows_Virtio_Drivers
https://fedoraproject.org/wiki/Windows_Virtio_Drivers

Storage Systems Chapter 4

[113]

Go to Browse to select the drive with the VirtIO ISO image, and then navigate to3.
the driver folder. The driver for the VirtIO disk image is usually stored in
\\<DriveLetter>\viostor\<windows_version>\amd6.

Storage Systems Chapter 4

[114]

After selecting the folder, it should show you the available drivers for the VirtIO4.
disk image, which is also known as Red Hat VirtIO SCSI controller, as shown in
the following screenshot:

Select the driver and continue with the Windows installation as usual.5.

Storage Systems Chapter 4

[115]

Installing VirtIO drivers after Windows installation
This method is useful when Windows is already installed on a VM and you need to convert
existing IDE/SATA disk images to VirtIO type. In this method, the VirtIO driver must be
loaded before the main OS disk image is changed to the VirtIO bus type. The following
steps are how we can change the bus type of the main Windows OS disk image after
Windows has already been installed on a non-VirtIO disk:

Create a small additional disk image.1.
Log in to Windows and load the VirtIO drive ISO image.2.
Install drivers so the additional VirtIO disk image is recognized and configured3.
by Windows.
Shut down Windows, change the main OS disk image to VirtIO type, and delete4.
the additional disk image.
Restart Windows.5.

Storage types in Proxmox
Proxmox has excellent plugins for the mainstream storage options. In this section, we are
going to see which storage plugins are integrated into Proxmox and also see how to use
them to connect to different storage types in Proxmox. The following are the storage types
that are natively supported as of Proxmox VE 5.0:

Directory
LVM
NFS
ZFS
Ceph RBD
GlusterFS

Directory
The Directory storage is a mounted folder on the Proxmox local node. It is mainly used as
local storage. But we can also mount a remote folder in a different node and use that mount
point to create a new Directory storage. By default, this location is mounted under
/var/lib/vz.

Storage Systems Chapter 4

[116]

Any VM stored in this Directory storage does not allow live migration. The VM must be
stopped before migrating to another node. All virtual disk image file types can be stored in
the Directory storage. To create a new storage with a mount point, go to Datacenter |
Storage, and click on Add to select the Directory plugin. The following screenshot shows
the Add: Directory storage dialog box, where we can add storage named local-iso,
which is mounted at /mnt/iso, to store the ISO and container templates:

For locally mounted storage, selecting the Shared checkbox is not necessary. This option
only pertains to a shared storage system, such as NFS and RBD.

iSCSI
Internet Small Computer Systems Interface, which stands for iSCSI, is based on Internet
Protocol, which allows the transmission of SCSI commands over a standard IP-based
network. iSCSI devices can be set up locally or over a vast distance to provide storage
options. We cannot store virtual disk images directly on an iSCSI device, but we can
configure LVM storage on top of the iSCSI devices and then store disk images. An attached
iSCSI device appears as if it were physically connected even if the device is stored in
another remote node.

For more details on iSCSI, refer to the following link:

http://en.wikipedia.org/wiki/ISCSI

http://en.wikipedia.org/wiki/ISCSI

Storage Systems Chapter 4

[117]

We will assume that you already have an iSCSI device created in a remote node using
FreeNAS or any other Linux distribution. To add the device to Proxmox, we are going to
use the iSCSI storage plugin, which we can find by navigating to the Datacenter | Storage
| Add menu. As shown in the following screenshot, we are adding an iSCSI target named
test1-iSCSI, which is configured in a remote node, 172.16.2.10:

Note that using LUNs directly is not recommended, although the option to enable them is
available. It is known to cause an iSCSI device error when accessed directly.

Logical Volume Management
Logical Volume Management (LVM) provides a method of storage space allocation by
using one or more disk partitions or drives as the underlying base storage. LVM storage
requires a base storage to be set up and function properly. We can create LVM storage with
local devices as backing or network backing with iSCSI devices. LVM allows scalable
storage space since the base storage can be on the same node or on a different one. LVM
storage only supports the RAW virtual disk image format. We can only store virtual disk
images or containers on LVM storage.

For more details on LVM, refer to the following link:

http://en.wikipedia.org/wiki/Logical_Volume_Manager_(Linux)

If the LVM disk array is configured using local direct-attach disks in the node, VMs stored
on this storage cannot be migrated live without powering down. But by connecting iSCSI
devices from a remote node, and then creating the LVM storage on top of the iSCSI volume,
we can make live migration possible since the storage is now considered shared storage.
FreeNAS is an excellent option to create LVM plus iSCSI shared storage at no license cost. It
comes with a great graphical user interface and many features, which go far beyond just
LVM or iSCSI.

http://en.wikipedia.org/wiki/Logical_Volume_Manager_(Linux)

Storage Systems Chapter 4

[118]

To add LVM storage, go to Datacenter | Storage | Add, and select the LVM storage
plugin. The following screenshot shows the LVM dialog box, where we are using the iSCSI
device test1-iscsi, that we added in the previous section, to create LVM storage:

NFS
Network File System (NFS), in short, is a well-matured filesystem protocol originally
developed by Sun Microsystems in 1984. Currently, version 4 of the NFS protocol is in
effect. But it was not as widely accepted as version 3 due to a few compatibility issues. But
the gap is closing fast between version 3 and 4. Proxmox, by default, uses version 3 of the
NFS protocol, while administrators can change to version 4 through the use of options in
storage.cfg. NFS storage can store the .qcow2, .raw, and .vmdk image formats,
providing versatility and flexibility in a clustered environment. NFS is also the easiest to set
up and requires the least amount of upfront hardware cost, thus allowing a budget-
conscious small business or a home user to get their hands on a stable shared storage
system for the Proxmox cluster.

Care should be taken when using NFS version 4 instead of version 3 in
Proxmox. There are still a few bugs that exist in NFSv4, such as kernel
panic during system startup while mounting the NFSv4 share.

The NFS server can be configured on just about any Linux distribution and then connected
to a Proxmox cluster. An NFS share is nothing but a mount point on the NFS server, which
is read by the Proxmox NFS plugin. We can also use FreeNAS to serve as the NFS server,
and thus take advantage of the FreeNAS features and GUI to easily monitor the shared
storage. Due to the simplicity of the NFS configuration, this is probably the most widely
used storage option in the virtualization world. Almost all network admins have used an
NFS server at least once in their career.

Storage Systems Chapter 4

[119]

In the following screenshot, we are connecting an NFS storage named nfs-01 from the
remote server 172.16.2.10:

After entering the IP address of the remote server, the Export drop-down menu will scan
the remote server for all the NFS shares and display them in the list. In our example, the
mount point found from the dialog box is in /nfs-vol/nfs-01.

ZFS
ZFS was originally developed by Sun Microsystems. ZFS storage is a combination of
filesystem and LVM, providing high-capacity storage with important features, such as data
protection, data compression, self-healing, and snapshots. ZFS has built-in software-defined
RAID, which makes the use of hardware-based RAID unnecessary. A disk array with ZFS
RAID can be migrated to a completely different node, and then entirely imported without
rebuilding the entire array. We can only store .raw format virtual disk images on the ZFS
storage. For more details on ZFS, refer to http://en.wikipedia.org/wiki/ZFS.

As of Proxmox VE 4.1, a ZFS storage plugin is included, which leverages the use of ZFS
natively in Proxmox cluster nodes. A ZFS pool supports the following RAID types:

RAID-0 pool: Requires at least one disk
RAID-1 pool: Requires at least two disks
RAID-10 pool: Requires at least four disks
RAIDZ-1 pool: Requires at least three disks
RAIDZ-2 pool: Requires at least four disks

http://en.wikipedia.org/wiki/ZFS

Storage Systems Chapter 4

[120]

ZFS uses pools to define storage. Pools can only be created through a CLI. As of Proxmox
VE 5.0, there are no ZFS management options in the GUI. All ZFS creation and management
must be done through the CLI. Once the pools are created, they can be attached to Proxmox
through the Proxmox GUI. In our example, we are going to create a RAID1 mirrored pool
named zfspool1 and connect it to Proxmox. The command used to create the ZFS pool is
as follows:

zpool create <pool_name> <raid_type> <dev1_name> <dev2_name> ...

So, for our example pool, the command will appear as follows:

zpool create zfspool1 mirror /dev/vdd /dev/vde

The following options are available for RAID types:

RAID type Option string to use

RAID0 no string

RAID 1 mirror

RAIDZ-1 raidz1

RAIDZ-2 raidz2

To verify that the pool is created, run the following command:

zpool list

The following screenshot shows the ZFS pool list as it appears for our example ZFS node:

Storage Systems Chapter 4

[121]

We can use the pool directly, or we can create a dataset inside the pool and connect the
dataset separately to Proxmox as an individual storage. The advantage of this is to isolate
the different types of stored data in each dataset. For example, if we create a dataset to store
VM images and another dataset to store backup files, we can turn on compression for the
VM image dataset to compress the disk image files while keeping compression off for the
backup-storing dataset since the backup files are already compressed, thus saving valuable
resources. Each ZFS dataset can be configured individually with its own set of configuration
options. If we compare a zpool with a directory, datasets are like subdirectories inside the
main directory. The following command is used to create a dataset inside a ZFS pool:

zfs create <zpool_name>/<zfs_dataset_name>

Datasets must be mounted in a directory before they can be used. By default, a new zfs
pool or dataset gets mounted under the root directory. The following command will set a
new mount point for a dataset:

zfs set mountpoint=/mnt/zfs-vm zfspool1/zfs-vm

To enable compression for the dataset, we can run the following command:

zfs set compression=on zfspool1/zfs-vm

The ZFS pool will only function locally from the node where the pool is created. Other
nodes in the Proxmox cluster will not be able to share the storage. By mounting a ZFS pool
locally and creating the NFS share, it is possible to share the ZFS pool between all the
Proxmox nodes. We can mount a zfs dataset in a directory and use that directory to
configure the Proxmox node as the NFS server.

The process of mounting and sharing needs to be done through a CLI only. From the
Proxmox GUI, we can only attach the NFS share with the underlying ZFS pool. In order to
serve the NFS share, we need to install the NFS server in the Proxmox node using the
following command:

apt-get install nfs-kernel-server

Enter the following line of code in /etc/exports:

/mnt/zfs/ 172.16.0.71/24(rw,nohide,async,no_root_squash)

Start the NFS service using the following command:

service nfs-kernel-server start

Storage Systems Chapter 4

[122]

To share the NFS-enabled ZFS pool through the Proxmox GUI, we can simply follow the
steps laid out for the NFS storage in the previous section. To add a ZFS pool or dataset to
the Proxmox cluster through the GUI, we need to log in to the GUI of the node where the
ZFS pool is created. In our two-node example cluster, we have the ZFS pools in node #1, so
we will have to access the GUI for that node. Otherwise, the ZFS pools or datasets cannot be
added from different node GUIs. We can find the ZFS storage plugin option by navigating
to the Datacenter | Storage | Add menu. Click on the ZFS plugin to open the dialog box.
The following screenshot shows the ZFS storage dialog box with the zfs pool example and
dataset in the drop-down menu:

By combining the ZFS pool with an NFS share, we can create a shared storage with
complete ZFS features, thus creating a flexible shared storage to be used with all the
Proxmox nodes in the cluster. Using this technique, we can create a backup storage node,
which is also manageable through the Proxmox GUI. This way, during a node crisis, we can
also migrate VMs to the backup nodes temporarily. The previous steps are applicable to any
Linux distribution and not just a Proxmox node. For example, we can set up a ZFS+NFS
server using Ubuntu or CentOS Linux to store virtual disk images or templates. If you are
using FreeNAS or a similar storage system, then the steps for ZFS laid out in this section are
not required. The entire process of ZFS creation is completed using the FreeNAS GUI.

Storage Systems Chapter 4

[123]

Ceph RBD
RADOS Block Device (RBD) storage is provided by the Ceph distributed storage system. It
is the most complex storage system, which requires multiple nodes to be set up. By design,
Ceph is a distributed storage system and can be spanned over several dozen nodes. RBD
storage can only store .raw image formats. To expand a Ceph cluster, simply add a hard
drive or a node and let Ceph know about the new addition. Ceph will automatically
rebalance data to accommodate the new hard drive or node. Ceph can be scaled to several
petabytes or more. Ceph also allows multiple pool creations for different disk drives. For
example, we can store database servers' VM images on an SSD-driven pool and back up
server images on a slower-spinning drive pool. Ceph is the recommended storage system
for medium-to-large cluster environments due to its resilience against data loss and the
simplicity of storage expandability.

As of Proxmox VE Version 4.1, the Ceph server has been integrated into Proxmox to coexist
on the same node. The ability to manage Ceph clusters through the Proxmox GUI has also
been added. Later in this chapter, we will learn how to create a Ceph cluster and integrate it
with Proxmox. Ceph is a truly enterprise storage solution with a learning curve. Once the
mechanics of Ceph are understood, it is also one of the easiest to maintain. To know more
about Ceph storage, refer to http://ceph.com/docs/master/start/intro/. There's more to
come in Chapter 5, Installing and Configuring Ceph.

GlusterFS
GlusterFS is a powerful, distributed filesystem, which can be scaled to several petabytes
under a single mount point. Gluster is a fairly new addition to Proxmox that allows
GlusterFS users to take full advantage of the Proxmox cluster. GlusterFS uses stripe,
replicate, or distribute mode to store files. Although distribute mode offers the option of
scalability, note that in stripe mode, when a GlusterFS node goes down, all the files in that
server become inaccessible. This means that if a particular file is saved by the GlusterFS
translator in that server, only that node holds the entire data of that file. Even though all the
other nodes are operational, that particular file will no longer be available. GlusterFS can be
scaled up to petabytes inside a single mount. The GlusterFS storage can be set up with just
two nodes and supports NFS, thus allowing you to store any image file format.

To know more about GlusterFS, visit the following link:

http:/​/​docs.​gluster. ​org/ ​en/ ​latest/ ​

http://docs.ceph.com/docs/master/start/intro/
http://docs.gluster.org/en/latest/
http://docs.gluster.org/en/latest/
http://docs.gluster.org/en/latest/
http://docs.gluster.org/en/latest/
http://docs.gluster.org/en/latest/
http://docs.gluster.org/en/latest/
http://docs.gluster.org/en/latest/
http://docs.gluster.org/en/latest/
http://docs.gluster.org/en/latest/
http://docs.gluster.org/en/latest/
http://docs.gluster.org/en/latest/
http://docs.gluster.org/en/latest/
http://docs.gluster.org/en/latest/
http://docs.gluster.org/en/latest/

Storage Systems Chapter 4

[124]

We can install Gluster on the same Proxmox node or on a remote node using any Linux
distribution to create a shared storage. Gluster is a great option for a two-node, stable
storage system, such as DRBD. The biggest difference is that it can be scaled out to increase
the total storage space. For a lower-budget virtual environment with redundancy
requirements, Gluster can be an excellent option. In a two-node Gluster setup, both the
nodes sync with each other and when one node becomes unavailable, the other node simply
takes over. The installation of Gluster is rather complex.

To learn more about how to set up a GlusterFS cluster, refer to the following link:

http://gluster.readthedocs.org/en/latest/Quick-Start-Guide/Quickstart/

In this section, we will see how to connect a GlusterFS cluster to Proxmox using the Gluster
plugin. We can find the plugin option by navigating to Datacenter | Storage | Add. Click
on the GlusterFS plugin to open the storage creation-dialog box, as shown in the following
screenshot:

http://gluster.readthedocs.org/en/latest/Quick-Start-Guide/Quickstart/

Storage Systems Chapter 4

[125]

The following table shows the type of information needed and the values used for our
example to attach GlusterFS:

Items Type of value Example value

ID New name of storage. gluster

Server IP address of the first Gluster
node.

172.16.0.171

Second Server IP address of the second Gluster
node.

172.16.0.172

Volume name Drop-down menu to select
available volumes on the Gluster
node.

gfsvol11

Content Selects the type of files to be
stored.

VZDump backup file

Nodes Selects nodes that can access the
storage.

All (No restrictions)

Enable Enables or disables the storage. Enabled

Max Backups Maximum number of recent
backup files can be stored. Older
backups will be deleted
automatically during the backup
process.

2

Since Gluster does not have the built-in software-defined RAID option, each Gluster node
will require some form of RAID for drive redundancy per node. Like NFS on top of ZFS,
which we learned earlier in this chapter, we can also put Gluster on top of ZFS and provide
drive redundancy that way. Note that this will create some overhead since resources will be
consumed by ZFS.

Storage Systems Chapter 4

[126]

Noncommercial/commercial storage options
We have discussed which virtual machine image formats and storage types are supported
by Proxmox. To better acquaint ourselves for test or practice labs, we are now going to take
a look at what noncommercial and commercial options we have out there in order to set up
a storage system for the Proxmox-clustered environment. By noncommercial, I mean they
are free without any primary features missing and without any trial limits.

These noncommercial options will allow you to set up a fully functional shared storage
system with some hard work. Commercial versions usually come with full support from the
provider company and, in some cases, an ongoing service-level agreement (SLA) contract.
The following list is by no means a complete one, but a guideline to guide you in the
direction where you need to plan and implement a Proxmox cluster environment. Each of
these products can provide everything you need to set up shared storage:

A question often asked is "Can I set up a Proxmox production cluster environment using
only noncommercial solutions?". The short answer is yes!

Storage Systems Chapter 4

[127]

It is indeed possible to create an entire complex Proxmox cluster using only noncommercial
storage solutions. However, you have to be prepared for the unexpected and spend a
significant amount of time learning the system. Commercial solutions aside, just studying a
system will give an administrator an advantage when unforeseen issues arise. The main
difference between these noncommercial and commercial solutions is the company support
behind it. Typically, noncommercial solutions only have community-driven support
through forums and message boards. Commercial offerings come with technical support,
with the response time varying from anything between immediate to 24 hours.

The trade-off of using noncommercial open source solutions is the money
that is saved, which usually gets substituted by the time spent on research
and mistakes.

Summary
In this chapter, we took a look at the storage options that are supported by Proxmox and
their advantages and disadvantages. We also saw the types of virtual image files that can be
used with Proxmox and when to use them. We learned how to configure different storage
options using NFS, ZFS, RBD, and Gluster as storage backends. Storage is an important
component for Proxmox clustering because this is where virtual machines are created and
operate from. A properly implemented storage system is crucial to making any cluster a
successful one. With proper planning of different storage requirements and by choosing the
right format and option, a lot of hassle and frustration can be minimized later on.

In the next chapter, we will see how to install and configure a Ceph storage system and
integrate it with a Proxmox cluster.

5
Installing and Configuring Ceph

Ceph is a distributed, highly scalable storage system which provides block, object, and file-
based storage in the same storage cluster. Ceph is open source and designed to run on off
the shelf commodity hardware. Currently, Ceph RADOS Block Device (RBD) block
storage is fully supported by Proxmox. The Ceph Reliable Autonomic Distributed Object
Store (RADOS) provides features such as replication, snapshot, and other block storage
abilities. There are numerous reasons to consider Ceph as a storage backend. The following
are some of the highlights of why one should consider Ceph over other storage systems:

Ceph is free
Ceph is a highly scalable, reliable, distributed storage system
Ceph RBD is seamlessly integrated with Proxmox clusters
Ceph can be managed and monitored through a dedicated Ceph menu in the
Proxmox GUI
Ceph can tolerate multiple simultaneous drive failures
As the Ceph cluster grows in size, so does the performance

Visit the official link to learn about Ceph in detail if you are new to Ceph or want to know
more about it: http:/ ​/ ​ceph. ​com/ ​.

When compared to other storage systems, such as ZFS, GlusterFS, and so on, Ceph is a
complex system. It requires extensive knowledge to properly maintain a Ceph cluster.
Despite its complexity, Ceph also offers the highest level of redundancy spanned over
multiple nodes and not just drive redundancy. In this chapter, we are going to learn how to
install and configure Ceph to work with a Proxmox cluster.

Proxmox VE 5.0 comes with Ceph Luminous, which is not yet fully
production ready. If your existing environment is built on Proxmox VE
4.x, then do not upgrade just yet. Try Proxmox VE 5.0 on a test
environment first instead.

http://ceph.com/
http://ceph.com/
http://ceph.com/
http://ceph.com/
http://ceph.com/
http://ceph.com/
http://ceph.com/
http://ceph.com/

Installing and Configuring Ceph Chapter 5

[129]

Ceph components
Before we dive in, let's take a look at some key components that make up a Ceph cluster.
These components are what makes Ceph, and it is important to have a proper
understanding of what they are.

A physical node as cluster member
A physical node is the actual server hardware that holds one or more Ceph components.

Maps
In Ceph, maps hold information, such as a list of participating nodes in a cluster and their
locations, and data paths, and a list of OSDs with certain data chunks. There are several
maps in a Ceph cluster, such as a cluster map, an object storage daemon (OSD) map for a
list of OSDs, a monitor map for known monitor nodes, a placement group (PG) map for the
location of objects or data chunks, and a CRUSH map to determine how to store and
retrieve data by computing the data storage location.

A cluster map
A cluster map is a map of devices and buckets that compose a Ceph cluster. Ceph uses a
bucket hierarchy to define nodes or node locations, such as a room, rack, shelf, host, and so
on. For example, let's say there are four disk drives used as four OSDs in the following
bucket hierarchy:

Bucket datacenter = dc01
|
Bucket room = 101
|
Bucket rack = 22
|
Bucket host = ceph-node-1
|
Bucket osd = osd.1, osd.2, osd.3, osd.4

Installing and Configuring Ceph Chapter 5

[130]

In the preceding example, we can see that osd.1 to osd.4 are in the node ceph-node-1,
which is in rack number 22, which is in room number 101, which is in data center dc01. If
osd.3 fails, and there is an on-site technician, then an administrator can quickly give the
technician the previous bucket hierarchy to identify the exact disk drive location to replace
it. There can be several hundreds of OSDs in a cluster. A cluster map helps you pinpoint a
single host or disk drive using the bucket hierarchy.

A CRUSH map
Controlled Replication Under Scalable Hashing (CRUSH) is an algorithm used in Ceph to
store and retrieve data by computing data storage locations within the cluster. It does so by
providing a per-device weight value to distribute data objects among storage devices. The
value is auto assigned, based on the actual size of the disk drive being used. For example, a
2 TB disk drive may have an approximate weight of 1.81. The drive will keep writing data
until it reaches this weight. By design, CRUSH distributes data evenly among weighted
devices to maintain a balanced utilization of storage and device bandwidth resources. A
CRUSH map can be customized by a user to fit any cluster environment of any size.

For more details on CRUSH maps, refer to the following link:

http://ceph.com/docs/master/rados/operations/crush-map/

Monitor
A Ceph monitor (mon) is a cluster monitor daemon node that holds the OSD map, PG map,
CRUSH map, and monitor map. Monitors can be set up on the same server node with OSDs
or on a fully separate machine. For a stable Ceph cluster, setting up separate nodes with
monitors is highly recommended. Since monitors only keep track of everything that
happens within the cluster and not the actual read/write of cluster data, a monitor node can
be very underpowered and thus less expensive. To achieve a healthy status of the Ceph
cluster, a minimum of three monitors need to be set up. A healthy status is when every
status in the cluster is OK, without any warnings or errors. Note that with the recent
integration of Ceph with Proxmox, the same Proxmox node can be used as a monitor.
Starting from Proxmox 3.2, it is possible to set up Ceph monitors on the same Proxmox
node, thus eliminating the need to use a separate node for monitors. Monitors can also be
managed from the Proxmox GUI.

For details on Ceph monitors, visit the following link:

http://ceph.com/docs/master/man/8/ceph-mon/

http://docs.ceph.com/docs/master/rados/operations/crush-map/
http://docs.ceph.com/docs/master/rados/operations/crush-map/
http://docs.ceph.com/docs/master/rados/operations/crush-map/
http://docs.ceph.com/docs/master/rados/operations/crush-map/
http://docs.ceph.com/docs/master/man/8/ceph-mon/

Installing and Configuring Ceph Chapter 5

[131]

OSD
The OSD is the actual storage media or partition within media, such as HDD/SSD, that
stores the actual cluster data. OSDs are responsible for all the data replication, recovery, and
rebalancing. Each OSD provides the monitoring information for Ceph monitors to check for
heartbeats. A Ceph cluster requires a minimum of two OSDs to be in the active+clean
state. The Ceph cluster provides feedback on the cluster status at all times. An
active+clean state expresses an error- or warning-free cluster. Refer to the PG section for
other states a Ceph cluster can achieve. As of Proxmox version 5.0, OSDs can be managed
through the Proxmox GUI.

OSD journal
In Ceph, any I/O writes are first written to a journal before they are transferred to the actual
OSD. Journals are simply smaller partitions that accept smaller bits of data at a time while
the backend OSDs catch up with the writes. By putting journals on faster-access disk drives,
such as SSDs, we can increase a Ceph operation significantly, since user data is written to a
journal at a higher speed while the journal sends short bursts of data to OSDs, giving them
time to catch up. Journals for multiple OSDs can be stored in one SSD per node.
Alternatively, OSDs can be divided into multiple SSDs. For a small cluster of up to eight
OSDs per node, using an SSD improves performance. However, while working with a
larger cluster with a higher number of OSDs per node, collocating the journal with the same
OSDs increases performance instead of using SSDs. The combined write speed of all the
OSDs together outperforms the speed of one or two SSDs as a journal.

The important thing to remember about a journal is that the loss of a journal partition
causes OSD data loss. For this reason, it is highly recommended that you use an enterprise-
grade SSD device. At the time of writing, the Intel DC S3700 SSD is known to work fine as a
Ceph journal SSD device.

Metadata server
A metadata server (MDS) stores meta information for the Ceph FileSystem or CephFS.
The Ceph block and object storage do not use MDS. So in a cluster, if block and object are
the only types that are going to be used, it will not be necessary to set up an MDS server.
Like a monitor, MDS needs to be set up on a different machine of its own to achieve high
performance. As of Proxmox version 5.0, MDS cannot be managed or created from the
Proxmox GUI.

Installing and Configuring Ceph Chapter 5

[132]

The CephFS is not fully standardized yet and is still in the development phase. It should not
be used to store mission-critical data. It is mostly stable, but unforeseen bugs may still cause
major issues, such as data loss. Note that there have not been many reports of mass data
loss due to an unstable CephFS installation. Two of the virtual machines used to write this
book have been running for more than 11 months without any issues.

There should be two MDS nodes in a cluster to provide redundancy, because the loss of an
MDS node will cause the loss of data on CephFS and will render it inaccessible. Two MDS
nodes will act as active+passive when one node failure is taken over by another node, and
vice versa. To learn about MDS and CephFS, visit http:/ ​/​docs. ​ceph. ​com/ ​docs/ ​master/
cephfs/​.

PG
The main function of a PG is to combine several objects into a group and then map the
group to several OSDs. A per-group mechanism is much more efficient than a per-object
mechanism, since the former uses fewer resources. When data is retrieved, it is far more
efficient to call a group than to call an individual object in a group. The following diagram
shows how PGs are related to OSDs:

http://docs.ceph.com/docs/master/cephfs/
http://docs.ceph.com/docs/master/cephfs/
http://docs.ceph.com/docs/master/cephfs/
http://docs.ceph.com/docs/master/cephfs/
http://docs.ceph.com/docs/master/cephfs/
http://docs.ceph.com/docs/master/cephfs/
http://docs.ceph.com/docs/master/cephfs/
http://docs.ceph.com/docs/master/cephfs/
http://docs.ceph.com/docs/master/cephfs/
http://docs.ceph.com/docs/master/cephfs/
http://docs.ceph.com/docs/master/cephfs/
http://docs.ceph.com/docs/master/cephfs/
http://docs.ceph.com/docs/master/cephfs/
http://docs.ceph.com/docs/master/cephfs/
http://docs.ceph.com/docs/master/cephfs/

Installing and Configuring Ceph Chapter 5

[133]

For better efficiency, we recommend a total of 50 to 100 PGs per OSD for all pools. Each PG
will consume some resources of the node, such as CPU and memory. A balanced
distribution of PGs ensures that all the nodes, and OSDs in the nodes, are not out of
memory, or that the CPU does not face overload issues. A simple formula to follow while
allocating PGs for a pool is as follows:

Total PGs = (OSD x 100) / Number of Replicas

The result of the total PG should be rounded up to the nearest power of two. In a Ceph
cluster with 3 nodes (replicas) and 24 OSDs, the total PG count should be as follows:

Total PGs = (24 x 100) / 3 = 800

If we divide 800 by 24, which is the total number of OSDs, then we get 33.33. This is the
number of PGs per replica per OSD. Since we have three replicas, we multiply 33.33 by 4
and get 99.99. This is the total number of PGs per OSD in the previous example. The
formula will always calculate the PGs per replica. For a three-replica setup, each PG is
written thrice, and thus, we multiplied the PG of 33.33 by 3 to get the total number of PGs
per OSD. Let's take a look at another example to calculate PG. The following setup has 150
OSDs, 3 Ceph nodes, and 2 replicas:

Total PGs = (150 x 100) / 2 = 7500

If we divide 7500 by 150, the total number of OSDs that we get is 50. Since we have 2
replicas, we multiply 50 by 2 and get 100. So, each OSD in this cluster can store 100 PGs. In
both examples, our total PG per OSD was within the 50-100 recommended range. Always
round up the PG value to remove any decimal point.

To balance the available hardware resources, it is necessary to assign the right number of
PGs. The PG number will vary depending on the number of OSDs in a cluster. The
following table shows a PG suggestion made by Ceph developers:

Number of OSDs Number of PGs

Fewer than 5 OSDs 128

Between 5-10 OSDs 512

Between 10-50 OSDs 1024

Installing and Configuring Ceph Chapter 5

[134]

Selecting the proper number of PGs is crucial since each PG will consume node resources.
Too many PGs for the wrong number of OSDs will actually penalize the resource usage of
an OSD node, while very few assigned PGs in a large cluster will put data at risk. A rule of
thumb is to start with the lowest number of PGs possible, and then increase them as the
number of OSDs increases. For details on Placement Groups, visit http:/ ​/​docs. ​ceph. ​com/
docs/​master/​rados/ ​operations/ ​placement- ​groups/ ​.

There's a great PG calculator created by Ceph developers to calculate the recommended
number of PGs for various sizes of Ceph clusters at http:/ ​/​ceph. ​com/ ​pgcalc/ ​.

Pools
Pools are like logical partitions where Ceph stores data. When we set a PG or the number of
replicas, we actually set them for each pool. When creating a Ceph cluster, three pools are
created by default: data, metadata, and RBD. The data and metadata pools are used by the
Ceph cluster, while the pool RBD is available to store the actual user data. PGs are set on a
per-pool basis. The formula that we discussed earlier in the PG section calculates the PGs
required for one pool. So, when creating multiple pools, it is important to modify the
formula a bit so that the total PG stays within 50-100 per OSD.

For instance, in the example of 150 OSDs, 3 Ceph nodes, and 2 replicas, our PG was 7500 for
a pool. This gave us 50 PGs per OSD. If we had 3 pools in that setup and each pool had 7500
PGs, then the total number of PGs would have been 150 per OSD. In order to balance the
PGs across the cluster, we can divide 7500 by 3 for 3 pools and set a PG of 2500 for each
pool. This gives us 2500/150 OSDs = 16 PGs per pool per OSD or 16 x 3 pools = 48 total PGs per
OSD. Since we have two replicas in this setup, the final total PGs per OSD will be 48 x 2
replicas = 96 PGs. This is within the recommended 50-100 range of PGs per OSD.

http://docs.ceph.com/docs/master/rados/operations/placement-groups/
http://docs.ceph.com/docs/master/rados/operations/placement-groups/
http://docs.ceph.com/docs/master/rados/operations/placement-groups/
http://docs.ceph.com/docs/master/rados/operations/placement-groups/
http://docs.ceph.com/docs/master/rados/operations/placement-groups/
http://docs.ceph.com/docs/master/rados/operations/placement-groups/
http://docs.ceph.com/docs/master/rados/operations/placement-groups/
http://docs.ceph.com/docs/master/rados/operations/placement-groups/
http://docs.ceph.com/docs/master/rados/operations/placement-groups/
http://docs.ceph.com/docs/master/rados/operations/placement-groups/
http://docs.ceph.com/docs/master/rados/operations/placement-groups/
http://docs.ceph.com/docs/master/rados/operations/placement-groups/
http://docs.ceph.com/docs/master/rados/operations/placement-groups/
http://docs.ceph.com/docs/master/rados/operations/placement-groups/
http://docs.ceph.com/docs/master/rados/operations/placement-groups/
http://docs.ceph.com/docs/master/rados/operations/placement-groups/
http://docs.ceph.com/docs/master/rados/operations/placement-groups/
http://docs.ceph.com/docs/master/rados/operations/placement-groups/
http://docs.ceph.com/docs/master/rados/operations/placement-groups/
http://docs.ceph.com/docs/master/rados/operations/placement-groups/
http://docs.ceph.com/docs/master/rados/operations/placement-groups/
http://ceph.com/pgcalc/
http://ceph.com/pgcalc/
http://ceph.com/pgcalc/
http://ceph.com/pgcalc/
http://ceph.com/pgcalc/
http://ceph.com/pgcalc/
http://ceph.com/pgcalc/
http://ceph.com/pgcalc/
http://ceph.com/pgcalc/
http://ceph.com/pgcalc/

Installing and Configuring Ceph Chapter 5

[135]

Ceph components summary
If we want to understand the relationship between all the Ceph components we have seen
so far, we can think of it this way: each pool comprises multiple PGs. Each PG comprises
multiple OSDs. An OSD map keeps track of the number of OSDs in the cluster and in the
nodes they are in. The mon map keeps track of the number of monitors in a cluster to form a
quorum and maintains a master copy of the cluster map. A CRUSH map dictates how much
data needs to be written to an OSD and how to write or read it. These are the building
blocks of a Ceph cluster. The following diagram is an example of how the Ceph components
come together to form the storage system:

Installing and Configuring Ceph Chapter 5

[136]

Virtual Ceph for training
It is possible to set up an entire Ceph cluster in a virtual environment. But this cluster
should only be used for training and learning purposes. If you are learning Ceph for the
first time and do not want to invest in the physical hardware, then a virtualized Ceph
platform is certainly possible. This will eliminate the need to set up the physical hardware
to set up Ceph nodes. The procedure to set up a virtual Ceph cluster is exactly the same as
for a physical one.

Installing a Ceph cluster
The following diagram is a basic representation of Proxmox and a Ceph cluster. Note that
both the clusters are on separate subnets on separate switches:

A Ceph cluster should be set up with a separate subnet on a separate switch to keep it
isolated from the Proxmox public subnet and for optimal Ceph cluster functioning. The
Ceph Sync LAN is used by Ceph primarily to sync data between OSDs. The Ceph Public
LAN is used primarily to serve user requests for data from Ceph into Proxmox VMs. The
advantage of this practice is to keep Ceph's internal traffic isolated so that it does not
interfere with the traffic of the running virtual machines. On a healthy Ceph cluster with the
active+clean state, this is not an issue. However, when Ceph goes into self-healing mode due
to an OSD or node failure, it rebalances itself by redistributing PGs among remaining OSDs,
which causes very high bandwidth consumption. Separating two clusters ensures that the
cluster does not slow down significantly due to the shortage of the network bandwidth and
the VM remains accessible.

Installing and Configuring Ceph Chapter 5

[137]

This also provides added security, since the Ceph cluster network is completely hidden
from any public access using a separate switch. In our previous example, we have three
mons, two MDSs, and three OSD nodes connected to a dedicated switch used only for the
Ceph cluster. The Proxmox cluster connects to the Ceph cluster by creating a storage
connection through the Proxmox GUI.

Installing Ceph on Proxmox
As of Proxmox version 5.0, it is possible to install Ceph on the same Proxmox node, thus
reducing the number of separate Ceph nodes needed, such as the admin node, monitor
node, or OSD node. Proxmox also provides the GUI features that we can use to view the
Ceph cluster and manage OSDs, mons, pools, and so on. In this section, we will see how to
install Ceph on the Proxmox node. As of Proxmox version 5.0, MDS server and CRUSH
map management are not possible from the Proxmox GUI.

Preparing a Proxmox node for Ceph
Since we are installing Ceph on the same Proxmox node, we will set up the network
interfaces for a separate network for Ceph traffic only. We will set up three of our example
Proxmox nodes—pmx-01, pmx-02, and pmx-03—with Ceph. On all of the three nodes, we
will add the following interfaces section to /etc/network/interfaces. You can use any
IP address that suits your network environment. We are going to run the following
command from the Proxmox node pmx-01:

nano /etc/network/interfaces

Configure all network interfaces according to IP addresses based on your environment. The
following is the content of the network configuration for our example cluster after Proxmox
and the Ceph network have been configured:

Node pmx-01
Proxmox Network
auto vmbr0
iface vmbr0 inet static
 address 172.16.2.1
 netmask 255.255.252.0
 gateway 172.16.3.254
 bridge_ports ens18
 bridge_stp off
 bridge_fd 0

Ceph Public Network

Installing and Configuring Ceph Chapter 5

[138]

auto ens19
 iface ens19 inet static
 address 192.168.20.1
 netmask 255.255.255.0

Ceph Sync Network
auto ens20
 iface ens20 inet static
 address 192.168.30.1
 netmask 255.255.255.0

The network interfaces can also be configured through Proxmox GUI. Reboot the node or
run the following command to make the new interface active:

ifup eth2

Follow the previous steps and add additional network interfaces with the IP addresses
192.168.10.2 and 192.168.10.3, respectively.

Installing Ceph
Proxmox added a small command-line utility called pveceph to perform various Ceph-
related tasks. Currently, pveceph can perform the following tasks through the command
line:

Command Task performed

pveceph install Installs Ceph on the Proxmox node.

pveceph createmon Creates Ceph monitors and must be run from the
node to become a monitor.

pveceph createpool <name> Creates a new pool. It can be used from any node.

pveceph destroymon <mon_id> Removes a monitor.

pveceph destroypool <name> Removes a Ceph pool.

pveceph init --network
<x.x.x.0/x>

Creates the initial Ceph configuration file based on
the network CIDR used.

pveceph start <service> Starts Ceph daemon services, such as mon, OSD,
and MDS.

pveceph stop <service> Stops Ceph daemon services, such as mon, OSD,
and MDS.

Installing and Configuring Ceph Chapter 5

[139]

pveceph status Shows the cluster, monitor, MDS server, OSD
status, and cluster ID.

pveceph createosd </dev/X> Creates OSD daemons.

pvecph destroyosd <osdid> Removes OSD daemons.

pveceph purge Removes Ceph and all Ceph-related data from the
node the command is running from.

Ceph must be installed and at least one monitor must be created using a command line
initially before managing it through the Proxmox GUI. We can perform the following steps
to install Ceph on the Proxmox nodes and create the first monitor. Run the following
command to install Ceph on all the Proxmox nodes that will be part of the Ceph cluster:

pveceph install -version jewel

Note that at the time of writing this book, the latest version of Ceph was codenamed Kraken.
However, the Ceph version Jewel LTS has been used for the writing of this book, as it is fully
supported by Proxmox, as of Proxmox 5.0. Simply change the codename in the command to
install the latest Ceph releases when they become available in Proxmox.

Visit the following link for information on Ceph releases and their life cycle:

 http:/​/​docs.​ceph. ​com/ ​docs/ ​master/ ​releases/ ​

Run the following command to create an initial Ceph configuration file on the first Proxmox
node. We only need to run this command once, and from one node only:

pveceph init --network 192.168.20.0/24

After running the command, Proxmox will create a Ceph configuration file in
/etc/pve/ceph.conf. It also creates a symlink of the configuration file in
/etc/ceph/ceph.conf. This way, any custom changes made to the Ceph configuration
file get replicated across all Proxmox nodes.

Although the Ceph cluster can be managed from the Proxmox GUI, in
order to perform advanced tasks, we need to use the CLI. Ceph comes
loaded with quite a few commands for various tasks. It is beyond the
scope of this book to list all Ceph commands. But a short list of commands
used to perform the most common tasks is included later in this chapter.

http://docs.ceph.com/docs/master/releases/
http://docs.ceph.com/docs/master/releases/
http://docs.ceph.com/docs/master/releases/
http://docs.ceph.com/docs/master/releases/
http://docs.ceph.com/docs/master/releases/
http://docs.ceph.com/docs/master/releases/
http://docs.ceph.com/docs/master/releases/
http://docs.ceph.com/docs/master/releases/
http://docs.ceph.com/docs/master/releases/
http://docs.ceph.com/docs/master/releases/
http://docs.ceph.com/docs/master/releases/
http://docs.ceph.com/docs/master/releases/
http://docs.ceph.com/docs/master/releases/
http://docs.ceph.com/docs/master/releases/
http://docs.ceph.com/docs/master/releases/
http://docs.ceph.com/docs/master/releases/

Installing and Configuring Ceph Chapter 5

[140]

Run the following command to create the first Ceph monitor on the same node that we just
created in the initial configuration file:

pveceph createmon

After performing these steps, we can proceed with the Proxmox GUI to further create mons,
OSDs, or pools. All the Ceph options can be obtained by navigating to the Datacenter |
node | Ceph menu. The following screenshot shows the content of the
/etc/ceph/ceph.conf file for our example cluster after creating a Ceph cluster with two
mons and no OSDs:

Installing and Configuring Ceph Chapter 5

[141]

Recall from the previous configuration screenshot that both the cluster and public network
are on the same subnet. That is because we have not configured the Ceph sync or cluster
network yet. Simply change the IP subnet of the cluster network by changing the Ceph
configuration file in /etc/ceph/ceph.conf to ask Ceph to sync OSDs on the separate
network. For our example cluster, we want the Ceph sync network to be on
192.168.30.0/24, as shown here:

When trying to access the Ceph menu through the GUI from a node which is not a Ceph
mon, you may see the following error message:

Installing and Configuring Ceph Chapter 5

[142]

If you do not intend to create any OSD on the node but want to manage the Ceph cluster
from a node, then simply install Ceph using the #pveceph command on that node and
create a mon. This will enable the node to read the Ceph configuration file and allow
managing of the Ceph cluster through the Proxmox GUI.

Creating mons from the Proxmox GUI
To view and create monitors from the Proxmox GUI, navigate to Datacenter | node |
Ceph | Monitor. Click on Create to open the monitor creation dialog box. Select a Proxmox
node from the drop-down list and then click on the Create button to initiate the monitor
creation. We can also quickly check the overall Ceph cluster status from the GUI. The
following screenshot shows our example Ceph cluster as seen through the Proxmox GUI
after the initial configuration:

From the Status interface, we can gather vital pieces of information at a glance. The Ceph
cluster contains an error at this moment since there are no OSDs added. It is perfectly
normal for the Ceph cluster to show PGs stuck at inactive and unclean, as we have not
added any OSDs.

Installing and Configuring Ceph Chapter 5

[143]

Creating OSDs from Proxmox GUI
OSDs are actual disk drives where data is stored in a Ceph cluster. All OSD-related tasks
can be performed through the Datacenter | node | Ceph | OSD menu. To view the
installed disk drives in the node, go to the Datacenter | node | Disks menu. The
following screenshot shows that we have two available drives, /dev/vdc and /dev/vdd,
which can be used to create OSDs in node pmx-01:

To create an OSD, go to the Datacenter | node | Ceph | OSD menu and click on the
Create OSD button to open a dialog box, as shown in the following screenshot. Select an
available disk drive from the drop-down list, and then click on the Create button:

Installing and Configuring Ceph Chapter 5

[144]

There is no need to select Journal Disk if the journal is going to be collocated on the same
OSD drive. Click on the Journal Disk drop-down button to select a different disk drive to
store the OSD journal. A faster drive, such as an SSD, can be used to store the Ceph journal,
which makes writing to the Ceph cluster extremely fast in a smaller cluster of fewer than six
Ceph nodes. If using a separate drive for journaling, the drive must be partitioned through
the CLI before creating the OSD using this dialog box. Follow the same procedure to finish
creating OSDs in the node. The following screenshot shows the Ceph Status page after
creating two OSDs in node pmx-01:

Installing and Configuring Ceph Chapter 5

[145]

Note that even after adding two OSDs in the node, our Ceph cluster is still degraded and
unclean. This is because we only created OSDs in one node. By default, Ceph will try to
create three replicas on different nodes. So, we are going to add four more OSDs in the
second and third node by following the previous steps. The following screenshot shows our
example Ceph cluster with six OSDs on three nodes, with a Health_OK status for Health:

By default, Proxmox creates OSDs with the XFS filesystem. However, sometimes, it is
necessary to create OSDs with different filesystem types, such as ext3, btrfs, and so on, due
to requirements or performance improvements. As of Proxmox 5.0, we cannot adjust the
partition type during the OSD creation through the GUI. It can only be done when creating
the OSD through CLI. Enter the following command format using the CLI to create OSDs
with different partition types:

pveceph createosd -fstype ext4 /dev/sdX

Installing and Configuring Ceph Chapter 5

[146]

Managing a Ceph pool using Proxmox GUI
All Ceph pool-related tasks can be performed through the Datacenter | node | Ceph |
Pools menu. The pool interface shows information about existing pools, such as the name,
replica number, PG number, and per-pool percentage used. Once a pool is created, it cannot
be modified or changed in any way from the Proxmox GUI. But a pool can be edited
through the CLI. If you are going to strictly use the Proxmox GUI to perform all Ceph-
related tasks, then a new pool needs to be created if existing pool configuration needs to be
changed, such as changing the replica size or increasing the PG number. When the Ceph
cluster is created, a default pool named rbd is created with replica size 3 and a total of 64
PGs. This PG number of the rbd pool is too low to store any data. So we can create a new
pool or we can modify this pool through CLI. When an existing pool holds a lot of data,
changing the pool configuration through CLI is the way to go, or else all data will need to
be moved to the new pool, which can take a very long time depending on the amount of
data being stored.

Replica size is the second most important configuration for a Ceph pool. Basically, replica
size defines how many times data will be replicated before it is distributed among OSDs on
different nodes. Keep in mind that a higher replica size will consume higher network
bandwidth and higher disk storage due to increased replication. For a smaller cluster, a
replica size of 2 is best suited from a performance standpoint. However, in a large Ceph
cluster with lots of drives and nodes, using a replica size of 3 is recommended.

For the pool rbd in our example Ceph cluster, we are going to change the default replica
size of 3 to 2 using the following command:

ceph osd pool set rbd size 2

We are also going to change the minimum size, or min_size, value of the pool. The
minimum replica size defines the minimum replicated data that must exist in order for the
pool to operate. For example, in the default pool rbd, the minimum size is 2. So if multiple
HDD failures occur where a set of OSDs that hold two data replicas goes down, the cluster
will not come online. But if the minimum size is 1, then as long as the Ceph cluster can see
one data replica anywhere in the cluster, even in the case of multiple OSD failures, the
cluster will still operate. A minimum size of 1 will ensure that there is always at least one
copy of data at all times. We can change the minimum size of a pool using the following
command format:

ceph osd pool set rbd min_size 1

Installing and Configuring Ceph Chapter 5

[147]

We are going to increase the PG number of the default pool rbd in order to make it usable
to store virtual machine data.

Refer to the Ceph PG calculator at the following link to calculate the number of PGs you
need for your Ceph cluster:

 http:/​/​ceph.​com/ ​pgcalc/ ​

There are two values that need to be set for the PG number of a pool: the actual PG number
and the effective PG number. This value is defined with the option pgp_num. The pgp_num
must be equal or less than pg_num. We are going to increase the PG number to 256 for our
default pool rbd using the following command:

ceph osd pool set rbd pg_num 256
ceph osd pool set rbd pgp_num 256

When changing PG values, it is very important to keep in mind that it is a very intensive
process. The Ceph cluster will be under load during this process. When changing the PG
value from low to high, it is a wise idea to do it in steps, using smaller PG values
incrementally. This is not a problem for a brand new Ceph cluster which is not serving any
users yet. But on an established Ceph cluster with many active users, the performance will
be noticeable and may cause service interruption.

The replica size, minimum replica size, and PG value are the most important values for a
Ceph pool. Changes in these values have the most impact on overall cluster performance
and reliability. So to recap, let's run these commands for a hypothetical pool named
vm_store. We are going to change the replica size to 3, minimum replica size to 1, PG
number to 1024, and effective PG number to 1024 using the following commands:

ceph osd pool set vm_store size 3
ceph osd pool set vm_store min_size size 1
ceph osd pool set vm_store pg_num 1024
ceph osd pool set vm_store pgp_num 1024

http://ceph.com/pgcalc/
http://ceph.com/pgcalc/
http://ceph.com/pgcalc/
http://ceph.com/pgcalc/
http://ceph.com/pgcalc/
http://ceph.com/pgcalc/
http://ceph.com/pgcalc/
http://ceph.com/pgcalc/
http://ceph.com/pgcalc/
http://ceph.com/pgcalc/

Installing and Configuring Ceph Chapter 5

[148]

The following screenshot shows the pool status for our default pool rbd in our example
cluster after making necessary changes through CLI:

Creating a Ceph pool using Proxmox GUI
To create a new pool using the Proxmox GUI, go to Datacenter | node | Ceph | Pools.
Then click on the Create button to open the pool-creation dialog box, as shown in the
following screenshot. Enter a name for the pool in the Name field, the number of replicas in
Size, and the number of minimum replicas; leave Crush RuleSet at 0; and enter the proper
PG number. Click on Create to start the pool's creation:

Installing and Configuring Ceph Chapter 5

[149]

Connecting Ceph to Proxmox
As of Proxmox VE 5.0, we can only connect Ceph block storage (RBD) to Proxmox. We
cannot connect Ceph Object Storage or Ceph FileSystem. We can connect Ceph RBD storage
to the cluster using the Proxmox GUI. However, there is one step that needs to be
completed before Proxmox can successfully read the Ceph storage. Ceph uses
authentication for its functioning. Authentication occurs based on keyrings, which are
created along with the Ceph cluster. For each Ceph storage, we need to connect to Proxmox,
and we need to copy the main Ceph admin keyring to the Proxmox directory. The keyring
that we need to copy is located in /priv/ceph.client.admin.keyring.

This keyring needs to be copied to the following location and in the following format. The
directory /etc/pve/priv/ceph does not exist, so it needs to be created first:
/etc/pve/priv/ceph/<storage_id>.keyring.

For example, we are going to create an RBD storage named rbd-01. So, we need to copy the
keyring, as shown in the following command:

cp /etc/pve/priv/ceph.client.admin.keyring
/etc/pve/priv/ceph/rbd-01.keyring

We can find the Ceph RBD storage plugin option by navigating to Datacenter | Storage |
Add. Click on the RBD (external) storage plugin to open the dialog box and add the
required information, as shown in the following screenshot:

Installing and Configuring Ceph Chapter 5

[150]

In the preceding screenshot, we are adding an RBD storage named rbd-01 that will store
virtual disk images in the Ceph pool named rbd. IP addresses of the Ceph mon nodes are
separated by a semicolon in the Monitor(s) textbox. There is no need to change the User
name, as the admin is the default user of the Ceph operation. As of Proxmox VE 5.0, we can
also use the Ceph RBD storage to store LXC containers. However, it will only work if we
select the KRBD option in the dialog box. It is possible to store both the LVM and LXC
images on a single KRBD-enabled RBD storage, but for maximum performance and
isolation, it is highly recommended that you use two separate Ceph pools for KVM and
LXC virtual machine disk images, with the KRBD option enabled for the LXC container
pool. The following screenshot shows the RBD storage status from the Proxmox GUI:

Installing and Configuring Ceph Chapter 5

[151]

Ceph command list
The following table shows some of the common Ceph commands used in a cluster:

Command Function

#ceph -s Displays the Ceph cluster
status.

#ceph -w Displays the Ceph cluster
running log.

#ceph health detail Displays a detailed error
if there is one.

#ceph osd tree Displays a list of all OSDs
categorized by nodes.

#ceph set osd noout
#ceph set osd nodown

Prevents any OSDs from
getting marked out and
down, so Ceph does not
start rebalancing. It is
necessary during
maintenance when the
node requires a reboot
due to updates.

#ceph unset osd noout
#ceph unset osd nodown

Must be run after the
maintenance is over in
order to resume normal
operation.

#ceph daemon osd.X config show | grep
<item_name>
Ex: #ceph daemon osd.2 config show | grep
threads

Displays runtime values
of Ceph. For example, we
can run this command to
display all thread-related
items in a Ceph cluster.

Installing and Configuring Ceph Chapter 5

[152]

#ceph tell osd.* injectargs '<item_name>
<value>'
Ex: #ceph tell osd.* injectargs '-osd-op-threads
8'

Injects values into items
during runtime without
restarting any daemons.
It is helpful to play
around with different
values to find optimum
numbers. When satisfied,
the changes must be
entered in
/etc/pve/ceph.conf or
else they will get reset
during the node reboot or
OSD daemon restart.

#ceph osd lspools Lists pools.

#ceph osd pool create <name> <pg> <pgs> Creates a pool.

#ceph osd pool delete <name> [<name> --yes-i-
really-really-mean-it]

Deletes a pool.

#ceph osd pool get <name> pg_num Gets the number of PGs
in a pool.

#ceph osd set pool <pool_name> size <value> Changes the replica
values of a pool.

Summary
In this chapter, we learned what Ceph storage is and how to install and configure it to work
with Proxmox cluster to store virtual disk images. We also learned various Ceph commands
to manage a Ceph cluster.

In the next chapter, we will learn details about KVM-based virtual machines. We will see
how to create and manage KVM virtual machines and their advanced configurations.

6
KVM Virtual Machines

So far, we have familiarized ourselves with the Proxmox graphical user interface,
configuration files, and directory structure. We have also learned about the different type of
storage supported by Proxmox and how to integrate a Ceph storage cluster in a Proxmox
environment. In this chapter, we are going to take it one step further by looking at Kernel-
based Virtual Machine (KVM) and all that it has to offer. We are going to cover some of
the following topics:

Exploring KVM virtual machines
Creating KVM virtual machines
Configuring KVM virtual machines
Migrating KVM virtual machines
Nested virtual environments
Proxmox backup/restore system
Virtual machine snapshots

KVM Virtual Machines Chapter 6

[154]

Exploring KVM
As the name implies, KVM is merely a virtualization process that adds the hypervisor
ability to a Linux kernel. KVM allows you to create fully isolated virtual machines while not
being dependent on the host operating system or kernel. The isolation is created by
emulating several types of hardware, such as CPU, RAM, sound/video/network cards, PCI
bridges, and input devices. In order to create KVM virtual machines, the CPU in the host
node must have hardware virtualization extensions (HWE). KVM/Qemu creates a layer
that virtualizes physical hardware, allowing full system virtualization and not kernel-level
virtualization, as is the case with OpenVZ and LXC containers. This allows a wide range of
operating systems to be virtualized, such as Linux, BSD, Windows, and macOS. One of the
main differences between KVM and container-based virtual machines is that a KVM virtual
system shares on the hardware level, whereas container-based virtualization shares on the
kernel level. Thus, the density of the number of KVM VMs in a node is much lower than
containers. KVM is the only choice for non-Linux operating systems and for purpose-built
operating systems based on Linux, such as ClearOS, FreeNAS, and Zentyal.

For more information on KVM, refer to the following link:

https://en.wikipedia.org/wiki/Kernel-based_Virtual_Machine

Creating a KVM
In Proxmox, we can a create KVM VM in the following ways:

From scratch using an ISO image
From a template
Using network PXE boot

In this chapter, we are only going to take a look at VM creation though ISO images and
templates.

https://en.wikipedia.org/wiki/Kernel-based_Virtual_Machine

KVM Virtual Machines Chapter 6

[155]

Creating a KVM using an ISO image
The VM creation process is based on simple tab-based dialog boxes. During the process, we
have to assign resources and type in necessary information pertaining to the VM. The
dialog box can be accessed by clicking on the Create VM button located in the top right-
hand corner of the screen, as shown in the following screenshot. It can also be accessed by
right-clicking on a node and then selecting Create VM from the context menu:

In our example cluster, we are going to create a KVM named centos1 in node pmx-01. To
progress through the VM creation, simply click on the Next button or click on the Back
button to go back to the previous tab. The following screenshot shows the dialog box after
we click on Create VM from the Proxmox GUI:

KVM Virtual Machines Chapter 6

[156]

General tab
The General tab of the dialog box is used to mainly assign identification information. Let's
have a look at them.

Node
This is a drop-down list to select in which Proxmox node the VM should be created.

VM ID
This is the textbox used to enter the numeric ID of the VM. We can also increase or decrease
the value of the VM ID using the arrows. If we assign an ID that exists in the cluster, the
box will show a red border around the box indicating that there is already a VM with the
same ID.

Name
This is the textbox used to enter the name of the VM. We can enter any alphanumeric string
with only a dash or - allowed as the special character.

Resource Pool
This is the drop-down menu used to select a previously created pool. It is only necessary if
we want to assign the VM to a specific pool. For our example VM, we are assigning it to
pool named Linux_VMs.

Help
The Help button will open a new tab with installed documentation created by Proxmox
developers. This documentation contains specific information pertaining to the tab. Each
Help button on different tabs is anchored to a particular section of the documentation. The
URL for this KVM documentation is
https://ip_addr:8006/pve-docs/chapter-qm.html.

KVM Virtual Machines Chapter 6

[157]

The OS tab
The OS tab is used to select the type of guest operating system that will be installed on the
VM. This type of selection allows the VM to be aware of the intended operating system and
adjust the architecture based on the OS selected. In our example VM, we have selected
Linux 4.X/3.X/2.6 Kernel, as shown in the following screenshot:

To achieve maximum performance and stability, it is highly recommended
you select the proper OS type.

KVM Virtual Machines Chapter 6

[158]

The CD/DVD tab
Since KVM VMs are fully enclosed and emulate a physical machine, we can only boot the
VM or load the operating system using ISO images loaded in a virtual CD/DVD drive or
through a physical drive attached to the Proxmox host node. In this tab, we can select
whether to use a virtual or physical CD/DVD drive or select an ISO image. The following
screenshot shows the dialog box for the CD/DVD tab, where we have selected CentOS ISO:

If we only want to create the VM without specifying any disk image, we will need to select
the Do not use any media option.

KVM Virtual Machines Chapter 6

[159]

The Hard Disk tab
In this tab, we specify the configuration for the first disk image of the VM. The following
screenshot shows the dialog box with the configuration for our example VM:

Bus/Device
There are two drop-down menus available for this option. One to select the disk image bus
type and the other to select the device ID.

For maximum performance, the VirtIO bus is recommended.

KVM Virtual Machines Chapter 6

[160]

For a Windows VM, it is necessary to select an IDE since Windows does not have a built-in
driver for VirtIO. In such cases, we can use the following steps to add VirtIO capability to a
Windows VM:

Create the VM with IDE and install Windows as usual.1.
Add a second disk image with the VirtIO bus and reboot into Windows.2.
Download the latest VirtIO driver ISO for Windows from the following links and3.
then load it through a virtual CD drive:

https:/ ​/ ​fedorapeople. ​org/ ​groups/ ​virt/ ​virtio- ​win/ ​direct-
downloads/ ​stable- ​virtio/ ​virtio- ​win. ​iso

http:/ ​/​www. ​linux- ​kvm.​org/ ​page/ ​WindowsGuestDrivers/ ​Download_
Drivers

Update the driver for the new hardware found for the VirtIO disk image.4.
Shut down the Windows VM and log in to the Proxmox dashboard.5.
From the Hardware tab of the VM, select the IDE image and click on Remove.6.
Note that this does not remove the disk image permanently. The disk image will
now show as Unused Disk 0:

Select the Unused disk 0 and click on Edit. This will open up a dialog box with7.
options to select the Bus/Device type and other configuration options:

https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers
http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers
http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers
http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers
http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers
http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers
http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers
http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers
http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers
http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers
http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers
http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers
http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers
http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers
http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers
http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers
http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers
http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers

KVM Virtual Machines Chapter 6

[161]

From this dialog box, we can select the desired bus type and other configuration8.
options if necessary.
Click on the Add button to add the disk image back to the VM.9.

The previous steps are necessary to enable the Windows VM to use a VirtIO disk image.
Once the driver is loaded, it is not necessary to reload it for additional VirtIO disk images.

Storage
This is a drop-down menu to select the storage in which the disk image should be stored.
Along with the name of the storage, the drop-down menu shows the total capacity and
available storage space of attached storage devices.

Disk size (GB)
This is a textbox to define the size of the disk storage in GB. The value can only be numeric.
We can also use the up and down arrows of the textbox to define the disk image size.

Format
This is a drop-down menu to select the type of disk image. If we select storage that only
supports a certain disk type, then this menu option will be greyed out. For example, in our
example cluster, we have selected Ceph RBD storage, which can only store .raw images as
of Proxmox 5.0. So the format option is greyed out.

KVM Virtual Machines Chapter 6

[162]

If we select the wrong format of disk image or later our requirement changes to using a
different format, we can simply use the Move disk option in the Hardware tab to change
the format. This can also be done through the CLI using the following command format:

#qemu-img convert -O <type> <source_image> <destination_image>

If we want to convert a .qcow2 disk image to a .raw image, the command would be as
follows:

#qemu-img convert -O raw vm-101-disk-1.qcow2 vm-101-disk-1.raw

This command works great for local, NFS, ZFS, and Gluster storage but is not suitable for
RBD. To change the disk image format stored in RBD, use the Move disk option in the
Proxmox dashboard. Besides RBD storage disk image, this Move disk option can be used to
move any disk image stored on any storage through the GUI without needing the CLI at all.
This option is also helpful to move a disk image from one storage to another without
powering off the VM. The move could be from local to shared or vice versa. To move or
change the format of a disk image, select the disk image from the Hardware tab and click on
Move disk to open a dialog box:

As shown in the previous screenshot, for our example VM we are moving a .raw disk
image from RBD to local storage. If we select the Delete source option, it will delete the
source file automatically after converting or moving is finished. If the option is not selected,
then we will have to manually delete the source file. The source file will show up as an
unused disk image under the Hardware tab of the VM.

KVM Virtual Machines Chapter 6

[163]

Cache
This drop-down menu allows us to select the cache method to use for the disk image. We
have learned about the different cache options in the Caching a virtual disk image section in
Chapter 4, Storage Systems. We can change the cache option any time even after the VM is
fully created and functioning. After each cache option change, we will need to power-cycle
the VM to enable the new cache option.

No backup
If this option is enabled, the virtual disk image will never be included in the backup. By
default, the option is disabled.

Discard
Disk images in Proxmox are sparse regardless of the image type, meaning the disk image
grows slowly as more data gets stored in it. Over time, data gets created and deleted within
the filesystem of the disk image. But in a sparse disk image, even after data is deleted, it
never reclaims the free space. The VM may report the correct available storage space but
Proxmox storage will show higher storage usage. The Discard option allows the node to
reclaim the free space that does not have any data. This is equivalent to the TRIM option
that was introduced in SSD drives. Before this option can be used, we have to ensure that
the VM uses the VirtIO SCSI controller. We can set the SCSI Controller Type under virtual
machine's Options tab:

KVM Virtual Machines Chapter 6

[164]

The Discard option may not be suitable for all environments, storage solutions, and
operating systems. Perform enough testing before implementing it in your environment. In
some cases, the Discard option may cause a VM to lock up, needing to be power-cycled.
The VM will need to be power-cycled if the option is enabled after powering it back up.

IO thread
There are two options for disk images with KVM:

IO thread
io=native

By default, Proxmox uses io=native for all disk images unless the IO thread option is
specifically checked for the disk image.

The IO thread option allows each disk image to have its own thread instead of waiting in a
queue with everything else. Since disk I/O is no longer waiting due to having its own
threads, it does not hold up other tasks or queues related to the VM, which in turn speeds
up the VM performance besides providing increased disk performance. The IO thread
option is fairly new in Proxmox. There were a few reported instances where the VM was
locked up due to this option. So perform plenty of testing before implementing this feature
in a production environment.

The CPU tab
This tab allows configuration of a virtual CPU for virtual machines. The following
screenshot shows the dialog box with available CPU options:

KVM Virtual Machines Chapter 6

[165]

Sockets
This option is to define the number of sockets the VM can use. We can use more than one
socket for the VM even if the physical node does not have enough sockets. This may only be
useful if an application in the VM requires us to have more than one socket. But it is not
useful at all to increase VM performance in a single-socket Proxmox node.

KVM Virtual Machines Chapter 6

[166]

Cores
This option is to define the number of cores the VM can use. It is good practice to start a VM
with a smaller number of cores and then increase them as needed, depending on load.
Assigning a large number of cores to a VM will cause unnecessary stress on the available
resources in the node. Usually, VMs can provide good performance with two or four cores
unless it is a high-demand VM, such as a remote desktop server or SQL/Exchange server.

Enabling NUMA
The non-uniform memory access (NUMA) is not a new approach to handling memory in a
multi-CPU environment, although it is a new addition to Proxmox VE. With NUMA,
memory can be distributed evenly among CPUs, which increases performance since there is
no bottleneck due to all CPUs trying to access the same memory bank. In Proxmox, the
NUMA option also enables memory and CPU hot-plugging. Without this option, hot-
plugging for CPU and memory will not work at all.

Any node with more than one CPU socket is usually NUMA aware. So enabling NUMA for
VMs in this node will benefit VM performance. NUMA will always try to keep the VM in
the same CPU package. We can check the NUMA status in the Proxmox cluster using the
following command:

numastat

This command will show all the nodes in the cluster that are NUMA aware and their
performance stats.

Type
This is a drop-down menu to select the CPU package type. By default, the Default (kvm64)
CPU type is selected for all VMs. A common use case is when a specific application requires
SSE or AVX instructions. By selecting the host CPU type, we can give a VM direct access to
the physical CPU.

For the best performance, host type should be used. This way, the VM will
be able to access the CPU directly without an emulation layer. This is
optimal type in an environment where all nodes are identical. For
maximum portability of a VM, it is best to choose the KVM or Qemu CPU
types.

KVM Virtual Machines Chapter 6

[167]

The Memory tab
This tab allows configuration of the memory allocation of the VM. The following screenshot
shows the dialog box for our example VM:

In Proxmox, we can set fixed or dynamic memory for a VM. Automatic range is also known
as memory ballooning. For the fixed option, all memory is allocated at once. In the dynamic
option, memory is allocated based on the VM, within a preset range. Automatic memory
allocation works great for Linux-based guest VMs. But for Windows VMs, memory
ballooning consumes a higher amount of CPU resources, causing the VM to slow down. So
for windows VMs, it is best to use fixed memory whenever possible.

KVM Virtual Machines Chapter 6

[168]

The Network tab
This tab allows configuration of the virtual network interface of the VM. The following
screenshot shows the dialog box for the network configuration of our example VM:

Bridged mode
This mode allows a VM to connect to the network using a bridge. The VM does not get
direct access to the outside network. We can set the VLAN ID at the node level, which
makes it unnecessary to configure it inside the VM. The Bridged mode also provides
firewall options for the VM. For our example VM, we have selected the default bridge
vmbr0 and enabled the Firewall option.

KVM Virtual Machines Chapter 6

[169]

Firewall
To enable the Proxmox firewall for network interfaces, this option needs to be checked.
Without this option, no firewall rules will be applied to the VM interface. We will look at
the Proxmox firewall in greater detail in Chapter 9, The Proxmox VE Firewall.

NAT mode
This mode provides a VM direct access to outside networks. Network traffic does not go
through any bridge. If VLAN is used in the physical network, it must be configured inside
the VM in order to have the data packets tagged or untagged. The Proxmox firewall option
is not available when using NAT mode.

No network device
This option will create the VM without any network interface configured.

Model
This is a drop-down menu to select the virtual network interface type. For maximum
network performance, the use of VirtIO is highly recommended. Windows does not come
with a VirtIO driver. So if this is used for a Windows VM, we have to manually load the
driver from the ISO we have downloaded in The Hard Disk tab section of this chapter. We
can also use Intel E1000 for Windows VMs. From Windows 7 onward, the driver for Intel is
included.

MAC address
By default, all MAC addresses for virtual network interfaces are automatically assigned. By
typing a MAC address in this textbox, we can specify a particular MAC address for the
interface. This may be necessary when a specific MAC address is required by an application
in the guest VM.

Rate limit (MB/s)
This is a textbox to define the maximum allowable speed of the network interface in
megabytes per second. This is a very useful option to limit network resources per VM.
Without any value defined, the VM will try to use as much bandwidth as possible.

KVM Virtual Machines Chapter 6

[170]

Multiqueues
Ordinarily, KVM VMs are single-queued, where sending and receiving packets occurs one
at a time and not in parallel. Multiqueues remove this bottleneck by allowing sending and
receiving in parallel by leveraging virtual CPU cores for parallel queues. Multiqueues are
especially useful for a VM which is active on numerous clients, for example, a web server.
In the Proxmox Network tab in the VM creation dialog box, we can enter a numeric value to
define how many parallel queues the VM should use. This value should not be more than
the allocated vCPU of the VM. For example, if the VM has a virtual core count of four, we
can set a Multiqueues value of 4. Multiqueues increase network performance of a VM
greatly since both sending and receiving can happen in parallel.

Keep in mind that enabling Multiqueues will also increase CPU usage of
the VM since each queue is dependent on each vCPU.

Disconnect
If this option is enabled, the virtual network interface will be created along with the VM but
will not be activated.

Creating VM by cloning
When deploying multiple VMs with identical configuration, creating them individually can
become a time-consuming process. In such cases, we can clone an existing VM or a
template. Cloning creates a fully independent VM with identical configuration. The cloned
VM is in no way connected to the VM it was cloned from. The cloning option can be
accessed from the context menu by right-clicking on the VM to be cloned:

KVM Virtual Machines Chapter 6

[171]

One of the uses of cloning a VM is backup strategy. A VM can be cloned regularly to
separate nodes, even on separate storage. In the event that the main node becomes
inaccessible, the cloned VM can be up and running in minutes without going through the
VM restore process. The following screenshot shows the clone dialog box after clicking on
Clone from the context menu:

KVM Virtual Machines Chapter 6

[172]

The cloning feature is also useful to keep the master VM up to date or add new applications
and so on, because the source VM is still a fully functional VM.

Creating VMs from a template
Similar to cloning, a template is also a quick way to deploy fully configured VMs without
going through the complete VM creation process and manually installing OS and
applications. We can create a new VM and install the OS and all other necessary programs
before converting it to a template. This way, all new VMs created from the template will be
fully configured with OS and programs. What sets template apart from just cloning is that
once a VM is converted to a template, it cannot be powered up again. If the template VM
needs any changes, a new VM must be created, configured, and then converted to a
template. We can however edit the hardware resources of the template. The primary benefit
of using a template to clone VMs is that a template allows us to create full-clone and linked-
clone VMs.

In order to create VMs from a template, we need to create the template first. We can do this
by converting a configured VM into a template. This option can be accessed by selecting the
VM to be converted and then right-clicking and selecting Convert to template to open the
dialog box:

In this example, we are going to convert one of our VMs, 102 (centos1), into a template.
Click on Yes to convert the VM into a template. As mentioned earlier, after the VM is
converted to a template, the VM itself is no longer usable. Another noticeable difference is
that the icon in the Proxmox dashboard is unique for KVM templates, as shown in the
following screenshot:

KVM Virtual Machines Chapter 6

[173]

With the template, we can now clone VMs that will be identical to the template. The
procedure to clone is the same whether it is a VM or a KVM template. To create a new VM
or deploy multiple VMs from the template, right-click on the template to open the context
menu and then click on the Clone option. This will open the cloning dialog box, as shown
in the following screenshot:

KVM Virtual Machines Chapter 6

[174]

Target node
This is a drop-down menu to select which node we want the cloned VM to be created on. It
could be the same node or any other node in the cluster with sufficient resources.

Mode
There are two cloning modes in Proxmox 5.0:

Full Clone
Linked Clone

Full Clone creates an identical copy of the VM, including the virtual disk image. This is a
truly isolated VM since it is not dependent on the source template or VM in any way. Even
if we delete the source template or VM, the newly deployed VM will still function without
any issue. A Full Clone consumes as much storage space as the original VM since the
virtual disk is also cloned. Full clones are useful when allocated resources are identical for
all deployed VMs but the guest operating system may or may not be different.

A Linked Clone creates a duplicate of the original VM minus the original virtual disk
image. This creates an additional blank disk image that is referenced to the original virtual
disk, and only new data gets placed in the linked cloned disk image. All read requests,
except for new data, are automatically redirected to the original disk image. A Linked
Clone is heavily dependent on the source template or VM. This clone mode is useful when
all cloned VMs will have the exact same hardware and software configuration, including
guest operating system. A Linked Clone consumes much less storage space since the
original or base image is never duplicated but only referenced by the new Linked Clone
VM.

Although we cannot power up the template, we can still make resource
changes such as CPU, and RAM. But it is not a recommended practice
since any hardware change may cause issues when a cloned VM is
powered on. It is also very important to ensure that the source template is
not damaged in any way. A corrupt template will cause all linked clones
to fail.

Advanced configuration options for VMs
We will now look at some of the advanced configuration options we can use to extend the
capability of KVM virtual machines.

KVM Virtual Machines Chapter 6

[175]

Configuring a sound device
In this section, we are going to see how to add sound support to a VM. Proxmox by default
does not add audio hardware to a VM. In order for the VM operating system to start the
sound service, some arguments must be added to the VM configuration file through CLI.
As of Proxmox VE 4.1 it is not possible to add a sound interface through GUI. The following
steps will add a sound device to a VM:

Log in to the Proxmox node through SSH or directly in the console.1.
Navigate to the VM configuration directory2.
/etc/pve/nodes/<node_name>/qemu-server/<vm_id>.conf.
Open the VM configuration file with your favorite editor and add the following3.
argument:

For Windows 10 and later VMs:

 args: -device intel-had,id=sound5,bus=pci.0,
 addr=0x18 -device hda-micro,id=sound5-codec0,
 bus=sound5.0,cad=0 -device had-duplex,
 id=sound5-codec1,bus=sound5.0,cad=1

For Windows XP VMs:

 args: -device AC97,addr=0x18

Save the configuration file and exit the editor.4.
Power-cycle the VM to activate the sound device.5.

Configuring PCI passthrough
In Proxmox it is possible to passthrough PCI devices directly into a VM. In this section, we
are going to see how to configure and verify PCI passthrough. The following steps are to
enable and configure PCI passthrough in Proxmox:

Log in to the Proxmox node through SSH or directly in the console.1.
Open the grub configuration file using an editor:2.

 # nano /etc/default/grub

KVM Virtual Machines Chapter 6

[176]

Change GRUB_CMDLINE_LINUX_DEFAULT="quiet" to the following:3.

For Intel CPUs:

 GRUB_CMDLINE_LINUX_DEFAULT="quiet intel_iommu=on"

For AMD CPUs:

 GRUB_CMDLINE_LINUX_DEFAULT="quiet amd_iommu=on"

Save the changes and exit the editor.4.
Run the following command to update grub:5.

 # update-grub

Only if using an AMD CPU, add the following line in the configuration file6.
/etc/modprobe.d/kvm_iommu_map_guest.conf:

 options kvm allow_unsafe_assigned_interrupt=1

Ensure the following modules are loaded in /etc/modules:7.

vfio_iommu_type1

vfio_virqfd

vfio_pci

vfio

Reboot the Proxmox node.8.
Locate the PCI device address in the form of xx:xx.x using the following9.
command:

 # lspci

Enter the following line with the PCI device ID in the VM configuration file:10.

 machine: q35
 hostpsi0: 01:00.0,pcie=1

Power-cycle the VM. 11.
Install necessary drivers for the PCI device in the VM operating system.12.

KVM Virtual Machines Chapter 6

[177]

Configuring GPU passthrough
In this section, we are going to see how to configure a video adapter to be used directly in a
VM. The GPU to be added to the VM must not be bound to the host node. To ensure that
the device is not being used by the host, take the following steps:

We have to find out the vendor and device ID of the GPU device to use1.
passthrough. To pinpoint the device, we can run the #lspci command. The
device should be the one showing up as a VGA compatible controller. The
following screenshot shows our VGA device with ID 00:02.0:

To find out the device and vendor ID, run the command again using the2.
following format:

 #lspci -n -s 00:02

The command will produce a set of numbers. The device and vendor IDs are the3.
last two sets of numbers. The following is the set of numbers for our example
node:

 # df00:02.0 0300: 1013:00b8

Take note of the device ID then create a file /etc/modprobe.d/vfio.conf to4.
explicitly define it as the GPU passthrough vfio device and to prevent VGA
arbitration to opt-out devices. Enter the following line in the vfio.conf file:

 options vfio-pci ids=1013:00b8 disable_vga

We now have to blacklist the default VGA drivers so they are not loaded during5.
boot, as follows:

 # echo "blacklist nvidia" >> /etc/modprobe.d/blacklist.conf
 # echo "blacklist radeon" >> /etc/modprobe.d/blacklist.conf
 # echo "blacklist nouveau" >> /etc/modprobe.d/blacklist.conf

KVM Virtual Machines Chapter 6

[178]

When trying to add GPU passthrough for a VM, it is important to keep in
mind that not all GPU devices are capable of being passthrough devices.
Try different configurations.

At this stage, we are now ready to configure the VM itself to use GPU passthrough. The
recommended way to configure is to use Open Virtual Machine Firmware (OVMF) PCI
passthrough. OVMF is a project to enable VMs to use Unified Extensible Firmware
Interface (UEFI) BIOS. To enable features of OVMF, the guest operating system must
support UEFI. The following steps will help find out if the GPU device is UEFI compatible:

Log in to the node with the GPU device through SSH.1.
Run the following commands to download and compile a tool to download the2.
GPU device's ROM content:

 # git clone https://github.com/awilliam/rom-parser
 # cd rom-parser
 # make

Run the following sets of command to download the ROM content of the GPU3.
device in a temporary directory:

 # cd /sys/bus/pci/devices/0000:01:00.0/
 # echo 1 > rom
 # cat rom > /home/rom-parser/image.rom
 # echo 0 > rom

Run the following command to test the downloaded ROM with the ROM parser4.
we have downloaded and compiled to figure out if the GPU device is UEFI
compatible:

 # cd /home/rom-parser
 # ./rom-parser /tmp/image.rom

The command will display information similar to the following:5.

 Valid ROM signature found @0h, PCIR offset 60h
 PCIR: type 3, vendor 102b, device: 0532, class: 030000
 PCIR: revision 0, vendor revision: 2139
 EFI: Signature Valid
 Last image

KVM Virtual Machines Chapter 6

[179]

If the PCIR is type 3 then the GPU device is UEFI/OVMF compatible.

The VM configuration should look like the following after selecting OVMF BIOS and
adding the hostpci line. Make the necessary changes and then power-cycle to activate the
new configuration:

bios: ovmf
scsihw: virtio-scsi-pci
machine: q35
hostpci0: 02:00,pcie=1,x-vga=on
....................
....................

When using NVIDIA GPU devices, software such as GeForce Experience may cause the
virtual machine to crash. In such cases, add the following line to
/etc/modprobe.d/kvm.conf. The issue may occur when using software such as
PassMark PerformanceTest and SiSoftware Sandra:

options kvm ignore_msrs=1

Preparing for hotplug
In this section, we are going to see how to configure the hotplugging option in Proxmox
virtual machines. Using the hotplugging feature, we can add and remove devices or
resources on a VM without restarting or power-cycling it. As of Proxmox 5.0, we can use the
hotplug option for the following resources:

Disk
Network interface
CPU
Memory
USB

As of Proxmox 5.0, we can only increase CPU and memory but cannot decrease it. Both the
disk and network interface can be equally hotplugged and unplugged. The following table
shows which device types are supported on different operating systems:

Device Kernel Hotplug/unplug OS

Disk All Both All versions of Linux/Windows

NIC All Both All versions of Linux/Windows

KVM Virtual Machines Chapter 6

[180]

CPU Greater than
3.10

Hotplug only for Windows
and both for Linux

All versions of Linux, Windows
Server 2008 and greater

Memory Greater
than 3.10

Hotplug only for Windows
and both for Linux

All versions of Linux, Windows
Server 2008 and greater

While the main configuration to enable hotplugging for Proxmox should be done through
CLI, we can enable or disable a hotplug device through the Datacenter | Node | VM |
Options tab menu, as shown in the following screenshot:

KVM Virtual Machines Chapter 6

[181]

We need to prepare a Linux-based VM first before hotplug can be used. Two modules must
be loaded inside the Linux guest OS to enable hotplug. We can load the modules using the
following command:

modprobe acpiphp
modprobe pci_hotplug

To automatically load the modules during boot, we can add them into /etc/modules.

If the Linux guest OS is based on Kernel less than 4.7, then we need to create a new udev
rule file in the /lib/udev/rules.d/80-hotplug-cpu-mem.rules file and add the
following lines:

SUBSYSTEM=="cpu",ACTION=="add",TEST=="online",ATTR{online}=="0",
ATTR=={online}="1"
SUBSYSTEM=="memory",ACTION=="add",TEST=="state",
ATTR{state}=="offline",ATTR=={state}="online"

For Linux guest OS based on kernel 4.7 or newer, we do not need to add the udev rules for
memory hotplug, but it is still required for CPU. We need to add the following kernel
parameter during boot:

memhp_default_state=online

The following steps are to add the kernel parameter during boot to enable memory hotplug:

Run the following command from a Linux guest OS SSH:1.

 #gksudo gedit /etc/default/grub

Locate the line starting with GRUB_CMDLINE_LINUX_DEFAULT and type in the2.
kernel parameter at the end of the line. The line now should appear as follows:

 GRUB_CMDLINE_LINUX_DEFAULT="quiet splash memhp_default_state=online"

Save the file and exit the editor.3.
Run the following command to update the grub boot loader:4.

 # sudo update-grub

The Proxmox node needs to be power-cycled to activate the modules, rules, and5.
kernel parameter.
After reboot, run the following command to verify which kernel parameters6.
successfully loaded during boot:

 # cat /proc/cmdline

KVM Virtual Machines Chapter 6

[182]

Configuring VMs with hotplug
For CPU and memory hotplug, we also have to make sure that the NUMA option is enabled
for the VM. The NUMA option can be found under the Datacenter | Node | VM |
Hardware | Processors menu. Click on Edit to open the CPU dialog box:

There is no additional configuration necessary to hotplug a virtual disk image or virtual
network interface.

Hotplugging vCPUs
To add a virtual CPU or vCPU, go to the Datacenter | Node | VM | Hardware menu.
Then, select Processors and click on Edit to open the dialog box. Simply type in the number
of cores or use the up and down option in the text to choose the desired number of cores or
vCPUs. Click on OK to accept the changes. We can also add a new CPU from this dialog
box. We can also add vCPUs by running the following command from the Proxmox node
CLI:

qm set <vm_id> -vcpus 2

Since our example VM already has one CPU, the previous command will add an additional
CPU, making it a total of two CPUs for the VM.

Hotplugging memory
To open the dialog box to edit allocated memory for a VM, go to the Datacenter | Node |
VM | Hardware menu. Select Memory and then click on Edit to open the memory dialog
box:

KVM Virtual Machines Chapter 6

[183]

Change the amount of memory to be allocated and then click on OK to accept the changes.
Ensure that the NUMA option is enabled in the Processors dialog box as mentioned in the
previous section.

Hotplugging disks/vNICs
To hotplug a new disk or network interface, go to the Datacenter | Node | VM |
Hardware menu and then select an item from the Add drop-down menu. The dialog boxes
to add these resources are similar to the dialog box for the VM creation process we have
seen in an earlier section in this chapter. The Add drop-down menu is as shown in the
following screenshot:

KVM Virtual Machines Chapter 6

[184]

Although CPU and memory hotplug works for both Linux and Windows,
ensure you run several tests before implementing them in a production
environment. The CPU/memory hotplug can create an unstable situation
for the VM, causing it to freeze and require a complete reboot.

Migrating KVM virtual machines
Proxmox migration allows KVM virtual machines to be moved to a Proxmox node in both
offline and online or live modes. The most common scenario of VM migration is when a
Proxmox node needs a reboot due to a major kernel update or other patches. Other
scenarios may include hardware failures, node replacement, software issues and so on.
Without the live migration option, each reboot would be very difficult for an administrator
as all the running VMs would have to be stopped first before reboot occurs. This will cause
major downtime in a mission-critical virtual environment.

With the live migration option, a running VM can be moved to another node without
downtime. During a live migration, the VM does not experience any major slowdown. After
the node reboots, simply migrate VMs back to the original node. Any offline VMs can also
be moved with ease.

Proxmox takes a very minimalistic approach to the migration process. To access the
migration dialog box, right-click on the VM to be migrated to open the context menu and
then select Migration or click on the Migrate button in the upper-right corner to open the
dialog box. The following screenshot shows the migrate dialog box:

KVM Virtual Machines Chapter 6

[185]

From the dialog, simply select the destination node and then, depending on online or offline
migration, click on the checkbox. Then hit the Migrate button to get the migration process
started. Depending on the size of virtual drive and allocated memory of the VM, the entire
migration process time can vary. Live/online migration also migrates the virtual memory
content of the VM. The bigger the memory, the longer it will take to migrate. In the
previous example, we were live migrating VM ID #103 to node pmx-02.

Summary
In this chapter, we looked at KVM virtual machines and how to create, clone, and migrate
when need be. We also looked at some advanced configuration, such as adding a sound
device and enabling PCI/GPU passthrough for a KVM VM. By leveraging this cloning
technique, we can scale a virtual cluster effortlessly when deploying identical virtual
machines. Optional and non-production setup of a nested virtual environment was also
explained.

A KVM virtual machine is best practice for all non-Linux operating systems and also when
total resource isolation between VMs is mandatory.

In the next chapter, we are going to look at LXC containers in greater detail. We will learn
why a Proxmox administrator would choose them over KVM virtual machines.

7
LXC Virtual Machines

From Proxmox VE 4.0, the OpenVZ container technology was replaced in favor of LXC
container. In this chapter, we will see the features and benefits of using an LXC container
and learn how to create and manage containers in Proxmox. We will cover some of the
following topics:

Exploring LXC containers
Understanding container templates
Creating an LXC container
Managing an LXC container
Migrating an LXC container
Accessing an LXC container
Unprivileged versus privileged containers
Converting an OpenVZ container to an LXC container

Exploring LXC virtual machines
Containers are a different form of the virtual machine that is completely dependent on the
operating system of the host node. They are kernel-based virtualizations that share the host
operating system, thereby reducing the overhead that a KVM virtual machine has. Due to
the lower overhead, the virtual machine density per node can be tighter and more
containers can be hosted than KVM virtual machines. This comes at a price of less virtual
machine isolation. Since containers are dependent on the underlying operating system,
there can only be Linux-based containers. No Windows operating system can be
containerized. Unlike KVM virtual machines, we cannot clone a container or turn a
container into a template. Each container is a virtual instance that runs separately.

LXC Virtual Machines Chapter 7

[187]

LXC is just another type of container technology. OpenVZ is another container technology,
which had been used by Proxmox until version 4.0. There are two major differences
between the LXC and OpenVZ container technologies:

LXC is available in the Linux kernel and doesn't need a separate kernel as in the
case of OpenVZ
OpenVZ supports live migration whereas LXC does not

The following are a few advantages of using LXC containers:

Extremely fast deployment
Higher density of virtual machine per node
Smaller backup files
Nested LXC containers with almost no overhead
Ability to directly access data inside the container filesystem from the host node

In Proxmox, LXC containers are identified by a unique icon in the GUI dashboard. The
following screenshot shows the icon of an LXC container with ID #101:

Understanding container templates
Unlike KVM virtual machines, which can be installed from ISO images, LXC containers can
only be deployed using container templates. Container templates are not the same as the
templates we created for KVM in the previous chapter. LXC templates of various operating
systems and an application-specific container can be directly downloaded from the
Proxmox repository. To view a list of available templates already downloaded, we need to
select an attached storage that can store container templates and click on the Content tab, as
shown in the following screenshot:

LXC Virtual Machines Chapter 7

[188]

In the preceding screenshot, we can see that we have a Ubuntu container template that is
already downloaded to our local storage. To view a list of available LXC templates and to
download them from the Proxmox repository, we need to click on the Templates menu to
open the dialog box:

There are over 100 templates available to be downloaded from this dialog box. If you are
not able to see the complete list and it only shows the Section: system templates, then run
the following command from the CLI to update the template list:

pveam update

LXC Virtual Machines Chapter 7

[189]

To download a template, simply select it and click on the Download button. The
downloaded template will now be available in the storage. The default location to store the
containers templates for local storage is as follows:

/mnt/pve/<storage>/template/cache

Creating an LXC container
After ensuring that we have the desired template for the container, it is now time to create
one. We can click on the Create CT button in the top-right corner of the Proxmox GUI to
open the container-creation dialog box, as shown in the following screenshot:

LXC Virtual Machines Chapter 7

[190]

General tab
The General tab of the dialog box is used to assign identification information such and
create a root password for the container.

Node
This is a drop-down list used to select which Proxmox node the container is going to be
created in. In our example, we will create the container in node pmx-01.

CT ID
This is a textbox used to enter the numeric ID of the container. We can also use the up and
down arrows in the box to assign the IDs. If we assign an ID that already exists in the
cluster, the box will show a red border around the textbox. For our example container, we
are using ID #101.

Hostname
This is a textbox used to enter the hostname of the container. The Hostname does not need
to be FQDN.

Unprivileged container
Unprivileged containers are when the container is created and run as a user as opposed to
root. This is the safest way to use a container because if the container security gets
compromised and the intruder breaks out of the container, they will find themselves as a
nobody user with extremely limited privileges. Unprivileged containers do not need to be
owned by the user since they are run in user namespaces. This is a kernel feature that
allows the mapping of the UID of a physical host into a namespace inside where a user with
UID 0 can exist. Unprivileged containers can also be run as root. By assigning a specific
UID and GID to root, we can create unprivileged containers throughout the system and
run them as root.

Privileged containers are when they are created and run by the root user only. These
containers are not secure because all the processes are still run as root. All containers
created through the Proxmox GUI or PCT tools are privileged containers.

LXC Virtual Machines Chapter 7

[191]

Enable this option to create unprivileged containers.

If total security or virtual machine full isolation is the primary concern for
an environment, it is best to use a KVM virtual machine, because KVM is a
fully independent virtual machine without any dependency on the host
operating system or sharing resources.

Resource Pool
This is a drop-down list menu used to select a previously created pool. It is only necessary if
we want to assign the container to a specific pool.

The Template tab
This tab is to select a template the container is going to be based on. Select Storage from the
drop-down menu where the template is stored, and then from the Template drop-down
list, select the template, as shown in the following screenshot:

LXC Virtual Machines Chapter 7

[192]

The Root Disk tab
This tab is used to define the disk storage space the container can use. The following
screenshot shows the dialog box with the configuration for our example container with the
local storage selected:

LXC Virtual Machines Chapter 7

[193]

Storage
LXC containers can be stored in all storage types without any modification with only one
exception for the Ceph RBD storage. KRBD must be enabled for the RBD storage in order to
store an LXC container. The inclusion of this option now allows leveraging the Ceph
distributed storage to be used with the LXC container platform. The following screenshot
shows the KRBD option from the storage dialog box:

ACLs
Access control lists or ACLs allow us to set more fine-tuned file ownership than the
traditional Linux user or group access models. By default, Proxmox creates LXC containers
with ACLs. To create a container without ACLs, select Off from the drop-down.

Enable quota
Enabling this option allows us to set limits inside an LXC container for the amount of disk
space each container user can use. However, this option currently only works on container
storage images based on the ext4 filesystem. It also does not work on unprivileged
containers.

LXC Virtual Machines Chapter 7

[194]

The CPU tab
This tab allows configuration of a virtual CPU for a container. The following screenshot
shows the dialog box with the available CPU options:

Cores
Unlike KVM virtual machines, we can only allocate CPU cores and not CPU sockets. We
can type in a value or select from the up and down arrows how many cores the container
can use. For our example container, we have allocated 1 CPU core.

LXC Virtual Machines Chapter 7

[195]

The Memory tab
This tab is used to define the allocated memory and swap the size for the container. It is
common practice to allocate an equal amount of swap size as the memory. Keep in mind
that for LXC containers, this swap allocation actually gets allocated to the host node swap
since the container does not have its own kernel running. This size can be adjusted for a
container at a later time without restarting the container. The following screenshot shows
the Memory tab dialog box with 512 MB of Memory and 512 MB of Swap space allocated:

The Network tab
This tab allows the network configuration of the container. The same dialog box is used to
edit or add a new network interface for the container. The following screenshot shows the
dialog box for our example container:

LXC Virtual Machines Chapter 7

[196]

Name
This is a textbox to define a name for the network interface.

MAC address
By default, all MAC addresses for virtual network interfaces are automatically assigned. By
typing a MAC address in this textbox, we can specify a particular MAC address for the
interface. This may be necessary when a specific MAC address is required by an application
in the container.

LXC Virtual Machines Chapter 7

[197]

Bridge
This is a drop-down list used to select a virtual bridge that the interface will be connected
to.

The VLAN Tag
This is used to set a VLAN ID on the virtual interface.

Rate limit
With this option, we can set a limit on how much bandwidth the container can use. The unit
is megabytes per second. By default, there is no limit.

Firewall
To enable the Proxmox firewall for the network interface, this option needs to be checked.
Without this option, no firewall rules will be applied to the interface. We will take a look at
the Proxmox firewall in detail in Chapter 9, The Proxmox VE Firewall.

IPv4/IPv6
We can set both IPv4 and IPv6 on the virtual network interface. We can also manually set IP
addresses or enable DHCP for automatic IP assignment. The IP must be entered along with
CIDR. Proxmox also supports dynamic IPv6 assignment using stateless configuration, such
as SLAAC. To learn about Stateless Auto Configuration or SLAAC, refer to https:/ ​/
tools.​ietf.​org/​html/ ​rfc4862.

https://tools.ietf.org/html/rfc4862
https://tools.ietf.org/html/rfc4862
https://tools.ietf.org/html/rfc4862
https://tools.ietf.org/html/rfc4862
https://tools.ietf.org/html/rfc4862
https://tools.ietf.org/html/rfc4862
https://tools.ietf.org/html/rfc4862
https://tools.ietf.org/html/rfc4862
https://tools.ietf.org/html/rfc4862
https://tools.ietf.org/html/rfc4862
https://tools.ietf.org/html/rfc4862
https://tools.ietf.org/html/rfc4862

LXC Virtual Machines Chapter 7

[198]

The DNS tab
This tab is used to configure the DNS information for the LXC container. Enter the domain
name to be used by the container and IP address(es) of the DNS server(s). The following
screenshot shows the DNS domain and DNS server information for our example container:

LXC Virtual Machines Chapter 7

[199]

The Confirm tab
This tab is to ensure the accuracy of the new container configuration. If any changes need to
be made, we can simply click on a tab to go back without losing values already entered or
selected. Click on Finish to create a container. The following screenshot shows our new
example container powered on and running:

Managing an LXC container
In Proxmox, each LXC container has two configuration files. One defines the raw resource
allocation while the other, used by Proxmox, is used to define a container. The Proxmox
container configuration file can be found at the following location:

/etc/pve/local/lxc/<container_id>.conf

LXC Virtual Machines Chapter 7

[200]

For our example container ID #101, the following are the contents of this configuration file:

The raw container configuration file can be found at the following location:

/var/lib/lxc/<container_id>/config

The following is the content of the resource allocation configuration file for our example
container:

LXC Virtual Machines Chapter 7

[201]

There is another directory for the root filesystem that is a mount point for the allocated
storage space inside the container. The location of the directory
is /var/lib/lxc/<container_id>/rootfs/.

But in Proxmox, this directory is not used to store container data. For local storage, the
container virtual disk image is created in /var/lib/vz/images/<container_id>/.

For shared storage, the container virtual disk image is created in
/mnt/pve/<storage>/images/container_id/.

We can adjust allocated resources for a container in real time without power-cycling the
container. This feature is known as hotplug for KVM virtual machines. However, for LXC
containers, this feature is built into the container technology without needing any
additional modification. There are three ways in which we can adjust allocated resources
for a container:

The Proxmox GUI
The command line
Editing a configuration file

Adjusting resources using the GUI
Using the Proxmox GUI to change resource allocation is the preferred way to adjust the
container resource. Any changes made get committed to the container instantly without
needing to power-cycle it. For day-to-day operations, the GUI provides almost all the
resource options to be changed with a few clicks.

To change a particular resource, we need to select a container from the left-hand navigation
bar, and then we need to select the resource to be changed. For example, if you want to
increase the allocated CPU cores to 2 from 1, you need to select the Cores line item and then
click on Edit to open the CPU Core dialog box. The following screenshot shows the
Resources currently allocated to the example container #101:

LXC Virtual Machines Chapter 7

[202]

To increase allocated storage space, we need to select the Root Disk line item under
Resources and then click on the Resize disk button to open the dialog box:

As of Proxmox 5.0, we can only increase the size of the allocated storage but cannot
decrease it. We can type in a value in GB or use the up and down arrows to adjust size. It is
important to note here that the value we will select here is not the total size of the allocated
space. This value adds on top of the already allocated space. For example, in our example
container #101, the allocated space is currently at 4 GB. So if we want to increase that to a
total size of 6 GB, we will type in 2 in the dialog box, which will increase the size by 2 GB.
Click on the Resize disk button in the dialog box to finalize the value.

LXC Virtual Machines Chapter 7

[203]

We can verify that the disk space has indeed increased by running the #df -H command
from inside the container. The following screenshot shows the command output, which
shows that the size of the root mount point has increased to 6.3 GB:

Adjusting resources using the CLI
LXC comes with a vast number of command-line commands to manage containers. It is not
possible to cover all the commands in this book. The good news for Proxmox users is that
there are some tools or commands provided by Proxmox to make managing containers an
easier task through the CLI. The pct command is a script created by Proxmox developers
that wraps lxc commands. To see the available Proxmox commands for containers, we can
run the following command:

pct help

We can also get details of all the pct commands from the Proxmox wiki at https:/ ​/​pve.
proxmox.​com/​wiki/ ​Manual:_ ​pct. ​conf.

Resource changes made using these commands get committed to the container immediately
without the need to restart the container. If the Proxmox GUI becomes inaccessible, we can
manage a container entirely using the CLI. The format command used to change container
resources is as follows:

pct set <ct_id> [options]

For example, if we want to change the IP address of the container #101, the command will
be as follows:

pct set 101 -net0 name=eth0,bridge=vmbr0,ip=192.168.1.17/24

https://pve.proxmox.com/wiki/Manual:_pct.conf
https://pve.proxmox.com/wiki/Manual:_pct.conf
https://pve.proxmox.com/wiki/Manual:_pct.conf
https://pve.proxmox.com/wiki/Manual:_pct.conf
https://pve.proxmox.com/wiki/Manual:_pct.conf
https://pve.proxmox.com/wiki/Manual:_pct.conf
https://pve.proxmox.com/wiki/Manual:_pct.conf
https://pve.proxmox.com/wiki/Manual:_pct.conf
https://pve.proxmox.com/wiki/Manual:_pct.conf
https://pve.proxmox.com/wiki/Manual:_pct.conf
https://pve.proxmox.com/wiki/Manual:_pct.conf
https://pve.proxmox.com/wiki/Manual:_pct.conf
https://pve.proxmox.com/wiki/Manual:_pct.conf
https://pve.proxmox.com/wiki/Manual:_pct.conf
https://pve.proxmox.com/wiki/Manual:_pct.conf
https://pve.proxmox.com/wiki/Manual:_pct.conf

LXC Virtual Machines Chapter 7

[204]

We can verify that the new network configuration has been applied to the container by
checking the network configuration file of the container in /etc/network/interfaces as
follows:

It is very important to note here that the gateway address is now missing from the network
configuration. The reason for this is that when we entered the previous command to change
the IP address, we did not mention the gateway. The pct set command will replace the
previous configuration for a resource is changed. If we want to include the gateway
address, the entire command will be as follows:

pct set 101 -net0
name=eth0,bridge=vmbr0,ip=192.168.1.17/24,gw=192.168.1.254

To adjust the allocated memory of the container in real time, we can use the following
command:

pct set <ct_id> -memory <int_value>

To change the CPU limit of the container, we can use the following command. The value 0
disables any CPU limit:

pct set <ct_id> -cpulimit <0 - 128>

The following command changes the hostname of the container:

pct set <ct_id> -hostname <string>

To increase the size of the root filesystem of the container, we can use the following
command:

pct set <ct_id> -rootfs size=<int_value for GB>

At times, due to an incomplete backup, a container may become locked and will be unable
to start or stop. The following command will unlock the container from the CLI:

pct set <ct_id> -unlock

LXC Virtual Machines Chapter 7

[205]

The following command will show a list of LXC containers in the node:

pct list

The following commands will start or stop an LXC container from the CLI:

pct start <ct_id>
pct stop <ct_id>

LXC commands are a very useful tool should the Proxmox GUI become inaccessible for any
reason and any container needs to be managed right away.

Adjusting resources using direct modification
Although modifying a configuration file to change resources of a container is possible, it is
not recommended for day-to-day operations. Any manual modification made to the files
does not get passed right away until the container is restarted, thus causing downtime.
However, there are some situations when manually editing the configuration file is
necessary. The number of configuration options can then be changed through the GUI, and
the pct tools are geared toward standard containers. LXC containers have a large number
of configuration options, which cannot be changed through the GUI or pct tools. Only by
editing the configuration files and restarting the containers can these options be applied. To
learn more about the advanced configuration options, refer to the following link:

http://manpages.ubuntu.com/manpages/precise/man5/lxc.conf.5.html

Migrating an LXC container
As of Proxmox VE 5.0, live migration of LXC containers is not possible. The container must
be turned off before it can be moved. This is not a limitation of Proxmox but rather the LXC
technology itself. To migrate a container, right-click on Container to open the Context
menu, and then select Migrate or click on the Migrate button in the top-right corner of the
GUI to open the Migration dialog box:

http://manpages.ubuntu.com/manpages/precise/man5/lxc.conf.5.html

LXC Virtual Machines Chapter 7

[206]

Select a destination node from the Target node drop-down list. Check the Restart
Mode box to auto-restart the container after the migration is complete. Click on the Migrate
button to initiate the migration. The migration process will auto-stop the container, migrate
it to the destination node, and then auto-start it at the end of the process.

Live migration is under heavy development by LXC, so we should expect it in the
mainstream LXC package in the near future. To some of us, the lack of this feature may be a
huge deal breaker, especially in a container-dominant environment with many container
instances.

Accessing an LXC container
There are several ways in which we can access an LXC container:

The noVNC console
SSH
Direct shell through the CLI

LXC Virtual Machines Chapter 7

[207]

The noVNC console
We can access and view the container directly from the GUI using the noVNC console. It is
almost visual remote access to the instance. The console is identical to a KVM virtual
machine. If we try to access the container using the console after a long period of inactivity,
it may appear as just a cursor and no login option:

By simply pressing the Enter key, we can make the login prompt appear, as shown in the
following screenshot:

LXC Virtual Machines Chapter 7

[208]

Direct shell through the CLI
One of the best features of an LXC container is the ability to directly access the container
shell through the CLI of the host node. The Proxmox command to access the LXC container
shell is as follows:

pct enter <ct_id>

This gives us the direct shell prompt of the container, as shown in the following screenshot:

In the previous example, we are accessing the LXC container ubuntu-01 from the Proxmox
node pmx-01. Note that no password was asked to be entered into the container from the
Proxmox node. Since a container is running as root, we can perform any tasks inside the
container. Once done, we can simply type exit to go back to the Proxmox node from the
container.

We can also run various commands inside an LXC container without actually entering the
container. The following Proxmox command format is used to execute commands inside a
container:

pct exec <ct_id> -- <command>

By following the previous format, if we want to create a directory inside the container and
verify that it has been created, our command will be as follows:

LXC Virtual Machines Chapter 7

[209]

If we try to execute a command with additional arguments using the following, we will see
a parsing error:

In the previous example, we tried to see the storage usage in megabytes inside a container
using an additional option argument, -H. In such cases, we have to modify the pct
command by adding -- after the container ID, as shown in the following screenshot:

In the preceding screenshot, we can see that the command to check the storage space has
been executed successfully inside the container.

Converting OpenVZ to LXC
This section is for container users who are still using Proxmox 3.x or earlier with OpenVZ
container technology. Since OpenVZ has been completely replaced in Proxmox VE 4.0 and
later versions, all OpenVZ containers must be converted to LXCs in order to make them
usable. The full conversion can be performed through the Proxmox GUI. The simple process
of this conversion can be summarized as follows:

Write down the OpenVZ container network information.1.
Power off the OpenVZ container, and then perform a full backup.2.
Restore the OpenVZ container on Proxmox 4.0 or later.3.
Reconfigure the network based on information collected in step 1.4.

LXC Virtual Machines Chapter 7

[210]

Do not upgrade to Proxmox VE 4.0 or later before making a full backup of
the existing OpenVZ containers. Otherwise, these containers will not start.

The reason it is important to write down the network configuration in step 1 is that when
OpenVZ containers are restored in Proxmox 4.0 or later, the network interfaces are stripped
off and need to be reattached and reconfigured.

We can also perform the conversion using the CLI without the Proxmox GUI. After
collecting the network information of the OpenVZ containers, we can power off the
containers and commit a full backup using the following command:

vzctl stop <ct_id> && vzdump <ct_id> -storage <storage_id>

Restore the container in Proxmox 4 or later using the following command:

pct restore <ct_id> <storage>/dump/<backup_file>.tar

Summary
In this chapter, we learned about LXC containers, how to create and manage them, and the
difference between unprivileged and privileged containers. We also learned how to convert
OpenVZ containers to LXC containers and use them in Proxmox VE 4.0 or later versions.
Despite not having the live migration ability, an LXC container is still a better choice of
containerization than OpenVZ and works very well in a Proxmox environment.

In the next chapter, we will see some advanced features of network components in a
Proxmox cluster. We will learn the benefits of a virtual network, what Open vSwitch is, and
why we should use it in a virtual environment.

8
Network of Virtual Networks

In this chapter, we are going to take an in-depth look at how we can create a virtualized
network within a virtual environment. We will learn what the network building blocks are
that make up the Proxmox hypervisor and how it manages both internal and external
network connectivity. We will examine several network diagrams to see how Proxmox can
be utilized to create an entire colony of virtual machines connected with virtual networks.
We will also take a look at the Open vSwitch implementation in Proxmox along with the
network configuration file, network bonding, VLAN, and so on. We can create dozens of
virtual machines at will, but without a planned network model, we will fail to run an
efficient virtual environment. If we compare virtual machines with bricks as building
blocks, then it is the virtual network that acts as mortar to create anything from a hut to a
cathedral.

In this chapter, we will cover the following topics:

Defining virtual networks
Networking components of Proxmox, such as bridge, vNIC, VLAN, and bonding
The Proxmox network configuration file
Open vSwitch implementation
Adding network components to a VM
Sample virtual networks
Multi-tenant virtual environments

Network of Virtual Networks Chapter 8

[212]

Exploring virtual networks
A virtual network is a software-defined network where all links and components may or
may not have direct interaction with physical hardware. In most cases, direct interaction
with physical hardware is made by the hypervisor or host controller. All links between
virtual machines, virtual switches, virtual bridges, and virtual network interfaces are made
completely virtually. The following are the two types of network virtualization:

External network virtualization: This consists of several local networks
operating as one virtual network. Physical LANs can be in the same location or
spread over multiple locations. Usually, external virtualization is a cloud network
service-based model that multiple companies can use to connect their multi-site
virtual environment for a service fee. External network virtualization can be
easily achieved by combining several internal virtual networks into a single
virtualized network using a WAN, or the internet using technology such as VPN.
Internal network virtualization: This usually happens locally within a
hypervisor between virtual machines. Do not confuse this with the local area
network. Here, internal network virtualization refers to the network connectivity
between VMs, bridges, vNICs, and so on, which do not necessarily have to utilize
the external LAN. This provides company IT staff with total control over virtual
network operations. Network issues can be diagnosed faster; customization of
expansion or contraction can happen without delay. Internal virtualization
heavily uses virtual components, such as virtual bridges and vNIC, to form a
virtual network.

For in-depth information on external and internal network virtualizations,
refer to http://en.wikipedia.org/wiki/Network_virtualization. In
particular, follow the References and Further reading book list at the bottom
of the wiki page.

In this chapter, we will take a look at the internal network virtualization in the Proxmox
hypervisor and how to manage and configure it. We will also take a look at some network
diagrams of internal and external virtual network combinations later in the book in Chapter
12, Proxmox Production-Level Setup.

Physical networks versus virtual networks
We will now see the difference between a physical network and a virtual network. The
following diagram represents a physical network without any virtualization platform:

http://en.wikipedia.org/wiki/Network_virtualization

Network of Virtual Networks Chapter 8

[213]

The following diagram represents virtualization as the main infrastructure:

Network of Virtual Networks Chapter 8

[214]

Before we dive into virtual network building blocks, we need to understand how networks
are set up in the preceding diagrams. Both the diagrams represent the same office setup
where the main administrative department is on the second floor, and the accounting
department is on the fourth floor of the building. It is apparent from the diagrams that a
physical network is less complex than a virtual network, but by leveraging virtualization,
we can cut costs, increase efficiency, reduce hardware maintenance complexity, and
increase portability.

A physical network
In the physical network diagram, there is no virtualization platform set up. The network is
set up with physical devices, such as firewalls, switches, servers, and full desktops. Each
department has its own servers and network segments. A centralized management for the
whole company does not exist. This is a costly solution due to all the physical hardware. If
redundancy is a requirement, it will incur twice the cost since we will need identical
physical servers. All the connectivity in this network is done with physical cable links.
Backups in this setup are quite challenging since all the physical servers in the two
departments have to be backed up on a per-device basis.

A virtual network
The virtual network diagram represents how Proxmox can handle a setup with multiple
departments. All the connections between servers and users' virtual machines happen
virtually without a physical network device. Using virtual bridges and vNICs, both the
administrative and accounting departments can coexist on the same Proxmox cluster. Since
all computing happens in the hypervisor, end users can have thin workstations to minimize
cost significantly. Users can connect to their virtual machines with remote protocols, such as
SPICE, VNC, or RDP.

Thin workstations or clients are very underpowered, cheap, and basic
computers for the end user, providing just the essentials to connect to
dedicated server resources. Since all processing happens in a virtual
environment, thin workstations do not need to be very powerful. The
main purpose of a thin workstation is to allow the user to connect
peripherals, such as the monitor, keyboard, mouse, and network cable. A
thin workstation can be purchased under $200. There are a lot of
environments where Raspberry Pi 3 is being used as a thin workstation
due to its price and reliability.

Network of Virtual Networks Chapter 8

[215]

In this setup, all servers and user machines are virtualized. If there is a need for a new
server, it is just a matter of creating a virtual server with vNIC with a few clicks. In such a
scenario, all virtual machines can simply be migrated to another available Proxmox node,
and everything is up and running in minutes. Both the departments in our example are
separated by two virtual bridges.

Through the use of the Proxmox GUI, all management can be done from one location,
including backup and restore. Virtual servers can be migrated over network links, which
can be spread over large or small physical distances. Although a virtual network setup is
much more robust and feature-rich, it has a much lower budgetary requirement. New
departments can be added by creating new virtual bridges for separate subnets and using
virtual LANs or VLANs on existing physical network switches.

Networking components in Proxmox
We will now take a look at the networking components of Proxmox, which allow virtual
machines to communicate with or be segmented from other internal machines as well as the
internet.

Virtual Network Interface Cards
A Virtual Network Interface Card (vNIC) is a software-defined representation of a Media
Access Control (MAC) interface of physical network interfaces. It is basically a virtual
network card for a virtual machine. Multiple vNICs can share a physical network interface
of a host node. In a way, networking starts with vNIC when a virtual machine sends data to
other virtual machines or networking devices within a virtual environment or physical
environment. In the following screenshot, the example virtual machine has a virtual
network interface named net0 assigned with the virtio driver and configured with the
bridge vmbr0:

Network of Virtual Networks Chapter 8

[216]

The virtio is a Linux kernel driver used to virtualize virtual network interfaces and
virtual disk devices. This is the default vNIC for new virtual machines in Proxmox. When
virtio drivers are used inside a guest virtual machine operating system, the VM is fully
aware that it is located inside a virtual environment. Thus the OS does not need to emulate
a physical device. Any emulation adds extra overhead, robbing performance. The virtio
has now become the virtualization standard for network and disk devices in a virtual
environment.

Proxmox has four models of virtual network interfaces: Intel e1000, VirtIO, Realtek
RTL8139, and VMware vmxnet3. Out of these four models, VirtIO provides the maximum
network performance for a VM. All Linux-based operating systems come equipped with
VirtIO drivers. For Windows, the VirtIO interface driver can be downloaded from http:/ ​/
www.​linux-​kvm.​org/ ​page/ ​WindowsGuestDrivers/ ​Download_ ​Drivers.

For Mac OS, the VirtIO interface driver can be downloaded from https:/ ​/​github. ​com/ ​pmj/
virtio-​net-​osx.

Adding/removing vNIC
To add a new virtual network interface for a VM, we can open the network device dialog
using the Add button from the Hardware tab of the VM:

The dialog box for creating vNICs is similar to the network dialog box that we learned
about in Chapter 6, KVM Virtual Machines, in the Creating a KVM section. To remove a
vNIC, simply select the network device and click on the Remove button.

http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers
http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers
http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers
http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers
http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers
http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers
http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers
http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers
http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers
http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers
http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers
http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers
http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers
http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers
http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers
http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers
http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers
http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers
https://github.com/pmj/virtio-net-osx
https://github.com/pmj/virtio-net-osx
https://github.com/pmj/virtio-net-osx
https://github.com/pmj/virtio-net-osx
https://github.com/pmj/virtio-net-osx
https://github.com/pmj/virtio-net-osx
https://github.com/pmj/virtio-net-osx
https://github.com/pmj/virtio-net-osx
https://github.com/pmj/virtio-net-osx
https://github.com/pmj/virtio-net-osx
https://github.com/pmj/virtio-net-osx
https://github.com/pmj/virtio-net-osx
https://github.com/pmj/virtio-net-osx
https://github.com/pmj/virtio-net-osx

Network of Virtual Networks Chapter 8

[217]

If the Hotplug option for the network interface is enabled for the VM, we can add or
remove the network interface without powering down the VM. The following screenshot
shows the Hotplug option for KVM VMs:

A virtual bridge
Just as a real-world bridge connects two sides of a river, a virtual bridge connects a
Proxmox virtual network to a physical network. A virtual bridge is like a physical network
switch where all virtual machines connect to and can be configured using the Spanning
Tree Protocol (STP). A virtual bridge is a great way to create separate subnets. All VMs in
the same subnet can connect to their respective bridges. Proxmox creates one virtual bridge
by default during the installation process. Each Proxmox node can support up to 4,094
bridges. When the same bridge configuration is entered on all nodes, the bridge can be used
from any nodes in the cluster, thus making live migration possible without network
connectivity interruption. The default naming format of a bridge is vmbrX, where X
represents an integer between 0 to 4,094.

Proxmox will allow a bridge to be created and not be connected to a physical NIC. This
allows an isolated environment, that has no access to the physical or any other network on
the LAN. Using Open vSwitch, however, we can configure one bridge with multiple
VLANs, such as a real physical switch. We will take a look at the Open vSwitch
implementation later in this chapter.

We can change a virtual bridge of a VM in real time without needing to power-cycle it. For
example, if a VM is configured with a virtual bridge, vmbr0, and we want to change the
bridge to vmbr10 later, we can do so without turning off the VM.

Network of Virtual Networks Chapter 8

[218]

Adding a virtual bridge through the GUI
We can add a new virtual bridge through the Proxmox GUI or CLI. Virtual bridges are
created at the node level. So select the node which will have the bridge and then click on
Network to see the list of existing configured virtual bridges and physical network
interfaces installed in that node. The following figure shows the Network option for our
node pmx-01 in our example cluster:

Note that if the GUI is used to create a bridge, then the node will need to be restarted to
apply the configuration. This is because a new network interface configuration through the
GUI gets written in /etc/network/interfaces.new, and only by rebooting does the new
configuration get permanently written in /etc/network/interface. The following
screenshot shows the pending change information after creating a new bridge named
vmbr1:

To revert the changes before a reboot is done, we can simply click on the Revert changes
button.

Network of Virtual Networks Chapter 8

[219]

To create a new bridge through the GUI, we need to click on Create under Network, and
then we need to select the Linux Bridge option to open the bridge creation dialog box, as
shown in the following screenshot:

Name
In the Name textbox, type in the name of the new bridge to be created. The naming format
must be vmbrX where X can be any integer from 0 to 4,094. For our example bridge, we are
naming it vmbr1.

IP information
We can configure both IPv4 and IPv6 for the bridge. However, the Gateway entry must
remain blank since we already have a default bridge configured with the gateway. There can
only be one bridge configured with the gateway per node. If we try to create another bridge
with a gateway address, the bridge creation process will abort with an error:

Network of Virtual Networks Chapter 8

[220]

Bridge ports
The Bridge ports textbox is to type in the physical network interface of the host to which
this bridge will be connected. There is no drop-down menu to choose a physical network
interface from. The name of the interface needs to be typed in. If the virtual network traffic
is not going to go out of the node but will remain isolated among the virtual machines
within the node, then we can leave the port's textbox blank.

It is important to note here that we can only configure one virtual bridge
per physical network interface. One physical interface can never be shared
among multiple bridges.

VLAN-aware
The VLAN-aware checkbox is a new addition that allows Proxmox to act as a trunk in a
switch that will pipe multiple VLANs over one connection. Although it is not important to
enable it, however, it is a new way of handling VLANs on the bridge. For example, if we
need to implement 10 VLANs, we will need to create 10 virtual bridges in the traditional
Linux bridge way. However, using the VLAN-aware option, we can create one bridge and
just add the VLAN ID to it, thus saving a lot of time typing out multiple bridge
configurations.

The following shows a basic example configuration of a traditional Linux virtual bridge for
10 VLANs:

auto vlan0
iface vlan0 inet manual
 vlan_raw_device eth0

auto vmbr0
iface vmbr0 inet manual
 bridge_ports vlan0
 bridge_stp off
 bridge_fd 0
..........
..........

auto vlan10
iface vlan10 inet manual
 vlan_raw_device eth0

auto vmbr10
iface vmbr10 inet manual
 bridge_ports vlan10

Network of Virtual Networks Chapter 8

[221]

 bridge_stp off
 bridge_fd 0

In the preceding configuration, we can see that there are a lot of bridge instances in the
traditional Linux form. However, using the VLAN-aware option, we can reduce the entire
configuration to just a few lines. The following is an example configuration of a VLAN-
aware bridge for 10 VLANs:

auto vmbr0
iface vmbr0 inet manual
 bridge_vlan_aware yes
 bridge_ports eth0
 bridge_vids 1-10
 bridge_pvid 1
 bridge_stp off
 bridge_fd 0

For a traditional Linux bridge, we have used additional lines of
configuration to create a VLAN port first, and then we pass that port as a
bridge port for the bridge. The configuration option is vlan_raw_device
<physical_port>. Although there is more than one way to create a
VLAN-backed bridge, this is the preferred method of configuration.

The advantage of using the traditional Linux method is that each VLAN gets its own virtual
bridge, thus isolating the network traffic further. For instance, when reconfiguring a bridge
of a particular VLAN ID, only that bridge and all the VMs connected to that bridge are
affected. For the VLAN-aware mode, when there is a misconfiguration, it can interrupt
network connectivity for all the VMs connected to the bridge. The VLAN-aware mode
provides similar functionalities as Open vSwitch but without the extra package. We will
learn about Open vSwitch later in this chapter.

Network of Virtual Networks Chapter 8

[222]

When using the VLAN-aware bridge, we have to tag each virtual interface with the VLAN
ID, as shown in the following screenshot:

When using traditional mode without the VLAN-aware option, we have to select the VLAN
tagged bridge itself instead of entering the VLAN Tag for the virtual network interface.

Adding a virtual bridge through CLI
Perform the following steps to create a virtual bridge in Proxmox through the CLI:

Log in to the Proxmox node through the console.1.
Open the interface file /etc/network/interfaces using an editor.2.
Add the configuration lines using the following format at the end of the file:3.

 auto <bridge_name>
 iface <bridge_name> inet static
 address 192.168.10.1
 netmask 255.255.255.0
 bridge_ports ens21
 bridge_stp off
 bridge_fd 0

Save the file and exit the editor.4.
Activate the bridge from the CLI using the following command:5.

 # ifup <bridge_name>

The new virtual bridge should now be activated and running. If virtual machines are to be
migrated to other nodes, then the configuration must be duplicated in all the nodes.

Network of Virtual Networks Chapter 8

[223]

Extra bridge options
There are two extra bridge options that are usually used with the virtual bridge
configuration.

bridge_stp
This option allows multiple bridges to communicate with each other for network discovery
and loop avoidance. This is useful to eliminate data cycles to provide optimal packet
routing because with STP on, bridges can talk to each other and figure out how they are
connected, and then provide the best routing possible for the data packet transmission. STP
also allows fault tolerance since it checks the network topology if a bridge fails. To turn on
the STP option, just modify the bridge configuration, as follows:

bridge_stp on

STP increases bandwidth efficiency while posing security issues. Do not use STP when a
virtual subnet requires isolation from the other virtual subnet in the same cluster and you
do not want the bridges to talk to each other. It is a useful option when working inside the
virtual environment of a company, where data can flow freely between departments'
subnets.

STP is turned off by default.

STP does not have any authentication and assumes all network interfaces to be trustworthy.
When a bridge inquires about the network topology from another bridge, information is
freely shared without any authentication. Thus, a user in the bridge can potentially gather
data of the entire network topology and other bridges in the network. This leads to a
dangerous situation when bridging between the internal environment and the internet.

bridge_fd
FD refers to forwarding delay. The bridge_fd option sets the delay before the interface
will be ready. During the delay, the bridge tries to discover other bridges and checks that
there are no network loops if STP is on. By default, the forwarding delay is set to 0, as
shown in the following code:

bridge_fd 0

Network of Virtual Networks Chapter 8

[224]

In most cases, the default value of 0 is enough. In a very complex virtual environment with
several dozen bridges, increasing this number to 3 or 4 might help. Without this delay, the
bridge will start transmitting data packets regardless of whether the other destination
bridge is available or not. Increasing the delay time allows the source bridge to check all the
bridges and not transmit any data if the destination bridge is down, thus preventing
unnecessary network bandwidth consumption.

There are many more bridge_ options to be used in a network
configuration file, such as bridge_hello, bridge_maxage,
and bridge_bridgeprio. Bridge options are Linux specific and beyond
the scope of this book. For in-depth information on bridges, visit
http://www.linuxfoundation.org/collaborate/workgroups/networking

/bridge.

Virtual LAN
A VLAN is a logical local area network within a physical local area network. It can be
compared with partitions within a physical disk storage. A physical network interface can
be partitioned to transport data for multiple separate subnets. This partition is achieved
using a VLAN ID. For details on VLANs or the IEEE 802.1q standard, refer to
http://en.wikipedia.org/wiki/IEEE_802.1Q.

Once VLAN data leaves the virtual environment, a physical network switch with the VLAN
feature tags each data with an ID and then directs the data to its proper destination. Each
subnet should have the same VLAN ID on the virtual environment and on the physical
network switch. VLAN helps reduce the broadcast traffic of multiple domains on the same
network. By segmenting a large network into smaller VLANs, broadcasts can be sent only
to relevant VLANs without interrupting other data traffic on the network.

VLAN also provides an added security layer on a multi-domain network since a user can no
longer just plug into the network and capture just about any data of any domain on the
network. Network segmentation is usually done with a layer 3 device such as a router.
However, by using a VLAN, significant cost savings can be achieved with the existing layer
2 devices on the network, such as a managed switch or smart switch. There are seven layers
defined by the Open Systems Interconnection (OSI) model by which network
communication takes place. For in-depth details on OSI, refer to http:/ ​/​en. ​wikipedia.
org/​wiki/​OSI_​model.

http://www.linuxfoundation.org/collaborate/workgroups/networking/bridge
http://www.linuxfoundation.org/collaborate/workgroups/networking/bridge
http://en.wikipedia.org/wiki/IEEE_802.1Q
http://en.wikipedia.org/wiki/OSI_model
http://en.wikipedia.org/wiki/OSI_model
http://en.wikipedia.org/wiki/OSI_model
http://en.wikipedia.org/wiki/OSI_model
http://en.wikipedia.org/wiki/OSI_model
http://en.wikipedia.org/wiki/OSI_model
http://en.wikipedia.org/wiki/OSI_model
http://en.wikipedia.org/wiki/OSI_model
http://en.wikipedia.org/wiki/OSI_model
http://en.wikipedia.org/wiki/OSI_model
http://en.wikipedia.org/wiki/OSI_model
http://en.wikipedia.org/wiki/OSI_model
http://en.wikipedia.org/wiki/OSI_model
http://en.wikipedia.org/wiki/OSI_model

Network of Virtual Networks Chapter 8

[225]

Adding a VLAN
VLAN can be set up on both the virtual machines and on bridges. If the VLAN traffic leaves
a virtual environment, it is important for each switch and physical network device to be
VLAN-aware and tagged properly. Tagging VMs with the VLAN ID is very straightforward
through the Proxmox GUI. Just enter the VLAN ID during the addition of a network
interface to a VM or edit the already added vNICs. The following screenshot shows a
virtual interface for a VM after it was tagged with a VLAN ID:

In the previous example, we have tagged the interface for VLAN ID 1. This tagging works
when the bridge has the VLAN-aware option enabled, or when Open vSwitch has been
implemented. When each virtual bridge is configured with a separate VLAN ID, then
instead of assigning a tag ID, we will configure the interface to use the bridge for that
VLAN. In the following screenshot, we have configured the network interface to use the
bridge vmbr1 instead of tagging:

Network of Virtual Networks Chapter 8

[226]

We can also configure a VLAN for bonded network interfaces. For this, instead of assigning
a physical interface as a VLAN raw device, we need to create a new bonded interface and
then use that for the VLAN raw device, as shown in the following example configuration:

auto bond0
iface bond0 inet manual
 slaves eth0 eth1

auto vlan1
iface vlan1 inet manual
 vlan_raw_device bond0

auto vmbr1
iface vmbr1 inet manual
 bridge_ports vlan1
 bridge_stp off
 bridge_fd 0

In the previous example, we created a bonded interface using the physical ports eth0 and
eth1. Then, we created a VLAN interface vlan1 using the bonded interface as the raw
device. The new virtual bridge vmbr1 was created from vlan1. Notice that nowhere have
we used the VLAN tag. Instead, we created the VLAN raw device based on the desired tag.
The name of the bridge is not important here, but the name of the VLAN interface is. If we
have to create a bridge for VLAN ID 9, then our configuration will look like this:

auto vlan9
iface vlan9 inet manual
 vlan_raw_device bond0

auto vmbr9
iface vmbr9 inet manual
 bridge_ports vlan9
 bridge_stp off
 bridge_fd 0

Besides the tagged virtual bridge and virtual network interface, in order to make the VLAN
work, we also have to configure a physical switch. Without a VLAN, the capable switch
network traffic will not be able to traverse between nodes or go outside the local network.
Traffic will be limited to inside the node only. Each physical switch comes with its own GUI
for switch configuration, but the basic idea of the VLAN configuration remains the same for
all.

The VLAN configuration is done on a physical switch by configuring trunks or general
ports. The option is usually found by navigating to the Switching | VLAN menu of the
GUI. The following screenshot is an example of the VLAN setting on the Netgear GS748T
smart switch:

Network of Virtual Networks Chapter 8

[227]

In the previous example, a demo VLAN with ID #9 was set up for the bridge, vmbr9. Next,
we have to configure the ports that are part of VLAN 9 under the VLAN Membership
menu, as shown in the following screenshot, where we have tagged ports 2, 3, 4, and 5 for
VLAN 9:

A good practice to identify which VLAN belongs to which bridge is to use
the same number for both the interfaces. For example, a bridge vmbr10
will have the VLAN ID 10. Without some order, in the beginning, bridges
and VLANs will quickly get out of control as the network grows over
time.

Network of Virtual Networks Chapter 8

[228]

Network Address Translation/Translator
Network Address Translation/Translator (NAT) is a method of remapping one IP address
space into another by modifying the network address information in the IP datagram
packet headers while they are in transit across a traffic routing device.

NAT secures a device by not directly exposing it to the internet or to a public network. It
also allows more physical devices to be able to communicate without having individual
public IPv4 addresses, which will cost money, and there is a limited supply of IP addresses
on the internet. NAT is usually configured in the router or firewall of a network, where the
policy is created for local-to-global and global-to-local IP address mapping.

NAT is relevant for IPv4 networks. An IPv6 network diminishes the need
to use NAT because IPv6 addressing is always public.

Adding NAT/masquerading
NAT is a way to hide internal network IP addresses from the external network, such as the
internet. Any outgoing traffic uses the main host IP address instead of using its own local IP
address. Add the last three lines of the following post-up and post-down settings to the
/etc/network/interfaces configuration file. Only add these lines under the virtual
bridge configuration that needs the NAT option:

auto vmbr0
iface vmbr0 inet static
address 192.168.145.1
netmask 255.255.255.0
 bridge_ports none
 bridge_stp off
 bridge_fd 0
 post-up echo 1 > /proc/sys/net/ipv4/ip_forward
 post-up iptables -t nat -A POSTROUTING -s '192.168.145.0/24' -o eth0
 -j MASQUERADE
 post-down iptables -t nat -D POSTROUTING -s '192.168.145.0/24' -o eth0
 -j MASQUERADE

Network of Virtual Networks Chapter 8

[229]

It is recommended that all NAT configurations be handled by a dedicated
physical or virtual firewall. Most firewalls have an out-of-the-box NAT
option. Also, using virtualized firewalls, we can create truly isolated
virtual networks for multiple clients on the same Proxmox cluster. Having
a virtual firewall provides the client control over their own filtering while
keeping their network hidden from the other client networks in the
cluster.

Network bonding
Network bonding or Teaming or Link Aggregation (LAG) is a concept where multiple
interfaces are combined to increase the throughput, set up network redundancy, and
balance network load. This concept is heavily used in high-demand environments where
downtime and slow network I/O are not acceptable. The Proxmox GUI provides excellent
features to create and manage to bonding within the cluster node. Bonding modes
supported by Proxmox are balance-rr, active-backup, balance-xor, broadcast, Link
Aggregation Control Protocol (LACP) or 802.3ad, balance-tlb, and balance-alb. The
following table lists the various bonding modes as well as their policies and descriptions:

Bonding mode Policy Description

balance-rr

or
Mode 0

Round robin Packet transmission takes place
sequentially from the first
participating network interface to
the last. This provides load
balancing and fault tolerance.

active-backup

or
Mode 1

Active backup Only one participating network
interface is active. The next
interface becomes active when
the previous active interface fails.
This only provides fault
tolerance.

Network of Virtual Networks Chapter 8

[230]

balance-xor

or
Mode 2

XOR This mode selects the same
participating interface for each
destination MAC address.
Transmission takes place based
on bonded network interfaces of
the MAC address XOR'd with the
destination MAC address. This
provides both load balancing and
fault tolerance.

broadcast

or
Mode 3

Broadcast Transmission takes place on all
participating bonded network
interfaces. This provides fault
tolerance only.

802.3ad

or
Mode 4

Dynamic link aggregation All participating network
interfaces in the aggregated
group share the same speed and
duplex settings. All interfaces are
utilized according to the 802.3ad
specification. A network switch
with 802.3ad or the LACP
feature is required. This provides
fault tolerance.

balance-tlb

or
Mode 5

Adaptive transmit load
balancing

Outgoing packets are distributed
according to the current load on
each participating interface.
Incoming packets are received on
the current interface, and if the
same interface fails, then the next
available interface takes over.
This provides fault tolerance and
load balancing for only outbound
packets.

Network of Virtual Networks Chapter 8

[231]

balance-alb

or
Mode 6

Adaptive load balancing This is the same as balance-tlb
with the inclusion of load
balancing for incoming packets
on all interfaces. This provides
fault tolerance and load balancing
for both incoming and outgoing
traffic.

Adding a bonding interface
We will now see how to add network bonding to our cluster. There are several types of
bonding options available. However, only balance-rr, active-backup, and LACP (802.3ad)
are the most widely used. The balance-rr option provides the round robin method to
increase the overall interface bandwidth with failover. The balance-rr option does not
require any special network switch. Just about any switch can be used to make this work.
The major drawback of balance-rr is a waste of data packets. LACP is known as the
industry-standard bonding.

In this book, we will only take a look at the LACP bonding protocol. However, to give you
an idea of what balance-rr bonding looks like, the following diagram shows balance-rr
bonding between Proxmox nodes and Ceph distributed storage clusters. In this example,
the Proxmox public network is on 192.168.10.0/24, while the storage backend is on a
private 192.168.201.0/24 subnet. Separate switches are used for the Ceph storage
network to increase redundancy. Each Proxmox node has three 1-gigabit NICs. One is used
from the main cluster of server virtual machines, and the remaining two are used for
balance-rr bonding. This type of bonding is a very economical way to provide network
redundancy:

Network of Virtual Networks Chapter 8

[232]

LACP can combine multiple interfaces to increase the total throughput but not the actual
connection. For example, an LACP bonding of four 1-gigabit network interfaces will still
have a total connection speed of 1-gigabit, but it will be able to respond to more
simultaneous requests closer to the 1-gigabit speed.

To know more about link aggregation/bonding/teaming, refer to http:/ ​/
en.​wikipedia. ​org/ ​wiki/ ​Link_ ​Aggregation_ ​Control_ ​Protocol#Link_
Aggregation_ ​Control_ ​Protocol.

For LACP to work, it is very important to know whether the physical switch supports this
feature. A quick visit to a switch manufacturer's website will give us the information about
whether the LACP feature is supported. Some manufacturers will list this feature as
802.3ad.

Like virtual bridges, we can also configure a network bond through the Proxmox GUI or
CLI. A bond created through the GUI will only be activated after the node reboots, whereas
a bond added through the CLI by editing the network configuration file directly can also be
activated through the CLI. We can open the bond interface creation dialog box from the
Hardware tab of the node. The following screenshot shows the dialog box for a bonded
interface, bond0, in our example Proxmox node:

http://en.wikipedia.org/wiki/Link_Aggregation_Control_Protocol#Link_Aggregation_Control_Protocol
http://en.wikipedia.org/wiki/Link_Aggregation_Control_Protocol#Link_Aggregation_Control_Protocol
http://en.wikipedia.org/wiki/Link_Aggregation_Control_Protocol#Link_Aggregation_Control_Protocol
http://en.wikipedia.org/wiki/Link_Aggregation_Control_Protocol#Link_Aggregation_Control_Protocol
http://en.wikipedia.org/wiki/Link_Aggregation_Control_Protocol#Link_Aggregation_Control_Protocol
http://en.wikipedia.org/wiki/Link_Aggregation_Control_Protocol#Link_Aggregation_Control_Protocol
http://en.wikipedia.org/wiki/Link_Aggregation_Control_Protocol#Link_Aggregation_Control_Protocol
http://en.wikipedia.org/wiki/Link_Aggregation_Control_Protocol#Link_Aggregation_Control_Protocol
http://en.wikipedia.org/wiki/Link_Aggregation_Control_Protocol#Link_Aggregation_Control_Protocol
http://en.wikipedia.org/wiki/Link_Aggregation_Control_Protocol#Link_Aggregation_Control_Protocol
http://en.wikipedia.org/wiki/Link_Aggregation_Control_Protocol#Link_Aggregation_Control_Protocol
http://en.wikipedia.org/wiki/Link_Aggregation_Control_Protocol#Link_Aggregation_Control_Protocol
http://en.wikipedia.org/wiki/Link_Aggregation_Control_Protocol#Link_Aggregation_Control_Protocol
http://en.wikipedia.org/wiki/Link_Aggregation_Control_Protocol#Link_Aggregation_Control_Protocol
http://en.wikipedia.org/wiki/Link_Aggregation_Control_Protocol#Link_Aggregation_Control_Protocol
http://en.wikipedia.org/wiki/Link_Aggregation_Control_Protocol#Link_Aggregation_Control_Protocol
http://en.wikipedia.org/wiki/Link_Aggregation_Control_Protocol#Link_Aggregation_Control_Protocol
http://en.wikipedia.org/wiki/Link_Aggregation_Control_Protocol#Link_Aggregation_Control_Protocol
http://en.wikipedia.org/wiki/Link_Aggregation_Control_Protocol#Link_Aggregation_Control_Protocol
http://en.wikipedia.org/wiki/Link_Aggregation_Control_Protocol#Link_Aggregation_Control_Protocol
http://en.wikipedia.org/wiki/Link_Aggregation_Control_Protocol#Link_Aggregation_Control_Protocol
http://en.wikipedia.org/wiki/Link_Aggregation_Control_Protocol#Link_Aggregation_Control_Protocol
http://en.wikipedia.org/wiki/Link_Aggregation_Control_Protocol#Link_Aggregation_Control_Protocol

Network of Virtual Networks Chapter 8

[233]

In the previous example, we used physical interfaces, ens21 and ens22, for our bonded
interface, bond0. We have not used any IP information since this bonded interface will not
be directly connected, but we will create VLAN interfaces and virtual bridges based on the
bond interface. For bond mode, we are using LACP with the layer 2+3 hash policy. There
are three hash policies to choose from the drop-down list:

layer2
layer2+3
layer3+4

To maximize the performance and stability of the network connectivity, it is important to
know the difference between the policies.

The layer 2 hash policy
If no policy is selected, then Proxmox uses the layer 2 policy by default. This policy
generates the transmission hash based on the MAC addresses of the network interface. This
policy puts all the network traffic on a single slave interface in the bonded LACP.

The layer 2+3 hash policy
This policy creates the transmission hash based on the combined MAC and IP addresses.
These are also the layer 2 and layer 3 protocols of the network layer. This policy also sends
the network traffic to a destination on the same slave interface. However, it provides more
balanced network transmission than just using the layer 2 policy. For best performance and
stability, use this policy.

The layer 3+4 hash policy
This policy creates the transmission hash based on the upper network layer whenever it is
available. The combination of layer 3 and 4 allows multiple network traffic or connections
spanning over multiple slave interfaces in the bonded LACP. However, one connection will
not span over multiple slave interfaces. For non-IP network traffic, this policy uses the layer
2 hash policy. Do keep in mind that the layer 3+4 policy is not fully LACP or 802.3ad
compliant.

Network of Virtual Networks Chapter 8

[234]

To create the bonding interface through the CLI, the following lines need to be added to the
configuration file. In our example, we are adding the physical interface ports, ens21 and
ens22, to the bonding interface:

auto ens21
iface ens21 inet manual
auto ens22
iface ens22 inet manual

bonding interfaces
auto bond0
iface bond0 inet manual
 slaves ens21 ens22
 bond_miimon 100
 bond_mode 802.3ad

We are going to add the following lines of code to create a virtual bridge using the bonded
port:

auto vmbr1
iface vmbr1 inet static
 address 192.168.10.1
 netmask 255.255.255.0
 bridge_ports bond0
 bridge_stp off
 bridge_fd 0

Activate the bridge by rebooting the node or from the CLI by stopping and restarting the
bridge. Use the following commands:

ifup bond0
ifdown vmbr1
ifup vmbr1

After configuring Proxmox nodes with LACP bonding, we now have to set up LACP on a
physical switch. Each switch comes with its own documentation on how to configure LACP
link aggregation. In this section, we are going to take a look at the Netgear GS748T smart
switch LACP feature. The option to enable LACP can be found by navigating to Switching
| LAG in the Netgear GUI. First, we have to enable LACP for each link group. The
following screenshot shows LACP enabled for group 1 to 3 through the LAG Configuration
menu:

Network of Virtual Networks Chapter 8

[235]

After the link groups are enabled, we will assign switch ports to each groups. In our
example, we are assigning port 1 and 2 to group 1 named ch1, port 3 and 4 to a group
named ch2, and port 5 and 6 to a group named ch3. The following screenshot shows ports
enabled for group 1:

Network of Virtual Networks Chapter 8

[236]

Bonding can also be used with a VLAN. Refer to the Virtual LAN section in this chapter to
learn how to integrate bonding with a VLAN.

Multicast
From Proxmox VE 4.0 and later, multicast is now required for proper cluster
communication. In simple words, multicast delivers a single transmission to multiple server
nodes in a network simultaneously, whereas unicast sends data packets to a single
destination from a single source. The more nodes there are in a cluster, the more separate
unicast packets need to be sent by it. Using multicast, this extra amount of traffic is vastly
minimized. Due to the increase of packets in the network when using unicast,
implementing it in a cluster with five or more nodes should be avoided. In order for
multicast to work, the physical switch in the network must be multicast and IGMP snoop
capable.

IGMP snooping is simply a process where the physical switch listens or snoops for an
IGMP conversation between the nodes and the switch. This allows the switch to maintain a
table or map to determine how and where to direct multicast requests. After enabling IGMP
snoop, it takes a few hours for the switch to establish the table after gathering enough data
for all multicast-enabled switch ports.

Keep in mind that Open vSwitch currently does not handle multicast. So
for the Open vSwitch environment, the multicast querier router must be
configured on the physical switch.

If it is not possible to use multicast at all in a Proxmox environment, then unicast is the only
choice. To test whether multicast is functioning in the cluster, we can run the following
command on all the Proxmox nodes:

omping <remote_node_ip> <local_node_ip>

If multicast is functioning fully, the output will show multicast responses:

Network of Virtual Networks Chapter 8

[237]

If you only see an error message waiting for response msg, that means the command
omping is only running on one node. Only by running it on multiple nodes simultaneously
can we generate multicast traffic. Unsuccessful multicast responses will show packet loss
for the node. The documentation of each physical switch should show whether the switch is
multicast capable. However, nowadays, almost all smart and managed switches have the
multicast feature. It is, however, disabled on all ports and must be enabled for proper
Proxmox cluster communication.

Configuring multicast on Netgear
In this section, we will see how to configure multicast for the Netgear smart switch GS748T.
To configure multicast, navigate to Switching | Multicast. First, we are going to enable the
IGMP snooping status through the IGMP Snooping Configuration option, as shown in the
following screenshot:

Network of Virtual Networks Chapter 8

[238]

Next, we have to Enable admin mode for the interface that will be used for IGMP snooping.
We can enable it from the IGMP Snooping Configuration interface option. As shown in the
following screenshot, in our example switch, we are enabling IGMP snooping for switch
ports 1 to 6, which is where Proxmox nodes are connected:

The last configuration to be made is to enable multicast traffic for switch ports from the
Multicast Router Configuration option. In our example, we are enabling multicast on ports
1 to 6, as shown in the following screenshot:

Network of Virtual Networks Chapter 8

[239]

Open vSwitch
Licensed under the open source Apache 2.0, Open vSwitch is a multi-layered, enterprise-
grade virtual switch born specifically to be used in modern virtual networks of a virtual
environment. This is similar to a virtual bridge of Linux but has more capabilities and
robust features. A question often asked is why one should choose Open vSwitch over time-
and industry-proven traditional Linux bridge and networking. Once we understand the
features and advantages Open vSwitch provides for a virtual network, the answer becomes
obvious.

Network of Virtual Networks Chapter 8

[240]

Features of Open vSwitch
The following are some of the features that make Open vSwitch a better option than
standard Linux networking:

Security: Open vSwitch provides a high degree of security by allowing you to set
policies per VM virtual interface.
LACP and VLAN-aware: Open vSwitch fully supports LACP link aggregation
and VLAN tagging. We can configure one Open vSwitch with multiple VLAN
tags, thus reducing the management overhead of many virtual bridges per VLAN
tag.
Quality of Service: QoS or quality of service is fully supported.
Network monitoring: We can get an extreme level of control over network
packets passing through Open vSwitch by implementing powerful monitoring
using Netflow and sFlow.
IPv6: Open vSwitch fully supports IPv6.
Tunneling protocol: This has full support for multiple tunneling protocols, such
as GRE, VXLAN, STT, and IPSEC.
Proxmox support: Open vSwitch is fully integrated and supported by Proxmox,
making it a viable choice for virtual network configuration.

For complete details on the Open vSwitch technology, visit the official site
at http:/ ​/​www. ​openvswitch. ​org/ ​.

It is possible to build a Proxmox cluster entirely with the traditional Linux bridge without
using Open vSwitch at all. But for a large environment, Open vSwitch does make great
sense since it can lessen tedious virtual network management while providing excellent
visibility over network traffic. In a multi-tenant environment, taking control over what is
going on in the network is very important.

Open vSwitch is not installed in Proxmox by default. It must be manually installed and
configured. On a clean installed Proxmox node, we have to configure the network as usual,
so the node can have internet connectivity. Then, run the following command to install
Open vSwitch:

apt-get install openvswitch-switch

Even if Open vSwitch is not installed, the Proxmox GUI will show the menu options for the
Open vSwitch bridge and interface under the Create tab of the Network menu of the node.

http://www.openvswitch.org/
http://www.openvswitch.org/
http://www.openvswitch.org/
http://www.openvswitch.org/
http://www.openvswitch.org/
http://www.openvswitch.org/
http://www.openvswitch.org/
http://www.openvswitch.org/
http://www.openvswitch.org/
http://www.openvswitch.org/

Network of Virtual Networks Chapter 8

[241]

An important thing to remember when using Open vSwitch is never to
mix traditional Linux components; for example, bridge, bond, and VLAN
should never be mixed with Open vSwitch components. We must not
create an Open vSwitch bridge based on a Linux bond and vice versa.

There are three components that we can use with Open vSwitch:

Open vSwitch bridge
Open vSwitch bond
Open vSwitch IntPort

Adding an Open vSwitch bridge
The Open vSwitch bridge is similar to the Linux bridge except that it is enough to configure
one Open vSwitch bridge, such as a physical switch, where we can pass several VLANs. We
do not need to create separate bridges for each VLAN, like Linux bridges. Configuring an
Open vSwitch bridge is a little more complicated than a Linux bridge. We need to configure
the port first before creating the actual bridge. In our example, we are going to configure the
port, eth1, which is what our Open vSwitch bridge, vmbr1, is going to be based on. For
this, we need to add the following lines of code to /etc/network/interfaces:

allow-vmbr1 ens21
iface ens21 inet manual
 ovs_type OVSPort
 ovs_bridge vmbr1

auto vmbr1
allow-ovs vmbr1
iface vmbr1 inet static
 address 192.168.0.171
 netmask 255.255.255.0
 ovs_type OVSBridge
 ovs_ports ens21

Unlike a Linux bridge, where VLANs are passed through bridge tagging, in Open vSwitch,
we can pass VLANs through ports directly. VLAN trunks are configured as additional
Open vSwitch options in the configuration, as shown in the following example, where we
are passing VLAN 2, 3, and 4:

allow-vmbr2 ens21
iface ens21 inet manual
 ovs_type OVSPort
 ovs_bridge vmbr2
 ovs_options trunks=2,3,4

Network of Virtual Networks Chapter 8

[242]

We can also create the Open vSwitch bridge through the Proxmox GUI. However, we need
to keep in mind that any network configuration performed through the GUI is not activated
until a node is restarted.

We can open the Open vSwitch bridge-creation dialog box from the network tab of a node.
The following screenshot shows the Open vSwitch bridge-creation dialog box with the
necessary information:

In the OVS options, we can include additional options for the bridge.

Adding the Open vSwitch bond
Like the Linux bridge, we can create various Open vSwitch bond interfaces. In this example,
we are going to create the LACP bonded interface for Open vSwitch. The following
configuration parameters are used to create a bond interface using the interface to create an
Open vSwitch bridge:

allow-vmbr1 bond0
iface bond0 inet manual
 ovs_type OVSBond
 ovs_bridge vmbr1
 ovs_bonds ens21 ens22
 pre-up (ifconfig ens21 mtu 8996 && ifconfig ens22 mtu 8996)
 ovs_options bond_mode=balance-tcp lacp=active trunks=2,3,4

Network of Virtual Networks Chapter 8

[243]

 mtu 8996

auto vmbr1
iface vmbr1 inet manual
 ovs_type OVSBridge
 ovs_ports bond0
 mtu 8996

In the previous example, a new parameter is added called pre-up. This is used to configure
jumbo packets. The default mtu for all the interfaces is 1,500. When configuring jumbo
packets, using the value of 8,996 is safer instead of 9,000 since some additional bytes are
added on top of the configured MTU for which a data packet may get discarded if the MTU
goes beyond 9,000.

We can configure the same Open vSwitch bond through the Proxmox GUI using the bond-
creation dialog box, as shown in the following screenshot:

The Open vSwitch bridge must be created before creating the Open vSwitch bond. We can
select the OVS bridge from the drop-down menu of the dialog box. It is not possible to add
extra parameters, such as configuring the desired MTU through the Proxmox GUI. So
before we restart the node, we can add the parameter to
/etc/network/interfaces.new so that the configuration gets committed
to /etc/network/interfaces during the node reboot.

Network of Virtual Networks Chapter 8

[244]

Adding Open vSwitch IntPort
In Open vSwitch, it is possible to give the host or physical node access to a VLAN through
the configured Open vSwitch bridge. This is done by creating an Open vSwitch component
called IntPort. In simple words, an IntPort splits a VLAN, which we can configure to assign
the IP information. This is useful to give the Proxmox node access to a VLAN. For example,
our example Proxmox node pmx-01 is currently configured to use the Linux bridge, vmbr0.
If we want to use Open vSwitch instead, we will have to create an Open vSwitch IntPort to
give the node access to the Open vSwitch bridge utilizing the VLAN. The following
parameters need to be added to the network configuration. ens18 is our main physical
network interface for the node:

auto vmbr0
allow-ovs vmbr0
iface vmbr0 inet manual
 ovs_type OVSBridge
 ovs_ports ens18 vlan1

allow-vmbr0 vlan1
iface vlan1 inet static
 ovs_type OVSIntPort
 ovs_bridge vmbr0
 ovs_options tag=50
 ovs_extra set interface ${IFACE} external-ids:iface-id=$(hostname -s)-
${IFACE}-vif
 address 172.16.2.1
 netmask 255.255.255.0
 gateway 172.16.2.254
 mtu 1500

Note that in the port configuration, we have added both ens18 and IntPort interface vlan1:

ovs_ports ens18 vlan1

Even though we have specified the Open vSwitch bridge through
ovs_bridge vmbr0 for the IntPort, we still have to specify it in the Open
vSwitch bridge definition or else the interface will never be started.

Network of Virtual Networks Chapter 8

[245]

CLI for Open vSwitch
Besides the option to create and edit Open vSwitch devices through the Proxmox GUI,
Open vSwitch comes loaded with command-line options to manage and gather information
of a particular bridge, bond, or interface. There are four types of commands in Open
vSwitch:

ovs-appctl: This is used to query and control the Open vSwitch daemon
ovs-vsctl: This is used to manage the Open vSwitch configuration database
ovs-ofctl: This is a tool used to monitor and manage the OpenFlow switch
ovs-dpctl: This is used to manage Open vSwitch data paths

It is beyond the scope of this book to go into details of all the available commands of Open
vSwitch. In this section, we will only take a look at the commands that may prove to be very
helpful while managing a Proxmox cluster:

To see a list of configured Open vSwitch bridges, ports, and interfaces, use the
following commands:

 # ovs-vsctl list br
 # ovs-vsctl list port
 # ovs-vsctl list interface

To see a list of all the interfaces in Open vSwitch, run the following command:

 # ovs-vsctl show

To modify options at runtime without rebooting node:

 # ovs-vsctl set <interface_type> <interface_name> <option>

For example, if we want to add more VLAN IDs to our Open vSwitch bonded
interface, run the following command:

 # ovs-vsctl set port bond0 trunks=2,3,4,5,6,7

We have to mention all the existing VLAN IDs along with the new ones.
Otherwise, the trunk configuration will get replaced with only the new ones
while the old configuration will get replaced. We also have to add the new IDs to
the /etc/network/interfaces file.

Network of Virtual Networks Chapter 8

[246]

To snoop and display traffic to and from the Open vSwitch bridge, run the
following command:

 # ovs-ofctl snoop <bridge_name>

To see the status of each of Open vSwitch components, run this command:

 # ovs-ofct lshow <name>

To dump OpenFlow flows, including hidden ones, run this command:

 # ovs-appctl bridge/dump-flows <bridge_name>

To print the version of Open vSwitch, run the following command:

 # ovs-appctl version

For a complete list of the available Open vSwitch commands, visit the following link:

http://www.pica8.com/document/v2.3/pdf/ovs-commands-reference.pdf

Practicing Open vSwitch
If you are using Open vSwitch for the first time, it may seem slightly complex at first. But
with practice and exposure, it really gets easier to create and manage a complex virtual
network fully powered by Open vSwitch. In this section, you are given the task to create a
network configuration for a Proxmox node using all the network components that we've
learned so far. The full configuration is given in the following section but try to create it on
your own first.

Configuration requirements
The Proxmox node has three physical network interface ports—eth0, eth1, and eth2—and
one InfiniBand interface, ib0.

We have to configure an LACP bonded Open vSwitch interface with two of the physical
ports. The bridge needs to be configured as a trunk for VLAN 11, 12, 13, and 14. All VMs
tagged as interfaces will connect to this bridge. The third physical interface will have to be
configured for backup purposes on a separate subnet without the VLAN.

http://www.pica8.com/document/v2.3/pdf/ovs-commands-reference.pdf

Network of Virtual Networks Chapter 8

[247]

The infiniband interface has to be configured to be used with Ceph on a separate subnet.
The node must use VLAN 12 for all host-related communication utilizing the Open vSwitch
bridge.

Solutions
The following is the full network configuration for the given requirements:

auto lo
iface lo inet loopback

LACP Bonded Open vSwitch Interface
allow-vmbr0 bond0
iface bond0 inet manual
 ovs_bridge vmbr0
 ovs_type OVSBond
 ovs_bonds eth0 eth1
 pre-up (ifconfig eth0 mtu 8996 && ifconfig eth1 mtu 8996)
 ovs_options bond_mode=balance-tcp lacp=active other_config:lacp-
time=fast trunks=11,12,13,14
 mtu 8996

Creating Open vSwitch bridge
auto vmbr0
allow-ovs vmbr0
iface vmbr0 inet manual
 ovs_type OVSBridge
 ovs_ports bond0 vlan12
 mtu 8996

Creating IntPort for physical node
allow-vmbr0 vlan12
iface vlan12 inet static
 ovs_type OVSIntPort
 ovs_bridge vmbr0
 ovs_options tag=12
 ovs_extra set interface ${IFACE} external-ids:iface-id=$(hostname -s)-
${IFACE}-vif
 address 172.16.0.171
 netmask 255.255.252.0
 gateway 172.16.3.254
 mtu 1500

Creating Infiniband interface
auto ib0
iface ib0 inet static
 address 192.168.0.171

Network of Virtual Networks Chapter 8

[248]

 netmask 255.255.255.0
 pre-up modprobe ib_ipoib
 pre-up echo connected > /sys/class/net/ib0/mode
 mtu 65520

Creating dedicated interface for backup
auto eth2
iface eth2 inet static
 address 192.168.10.171
 netmask 255.255.255.0

Sample virtual networks
At this stage, we have covered components of virtual networks within the Proxmox cluster
environment. We know the components Proxmox uses to hold everything together.

We are going to take a look at a few virtual environment scenarios to solidify our
understanding of networking in a Proxmox virtual environment. These are scenario-based
network diagrams and some of them are taken from a real production environment.

Network #1 – Proxmox in its simplest form
This is a small-scale Proxmox cluster with three nodes and two subnets within the virtual
environment. Each Proxmox node has two NICs, and both the bridges vmbr0 and vmbr1 are
attached to eth0 and eth1, respectively. Each bridge has three virtual machines attached to
it. Outside the virtual environment, there is a physical switch, which connects Proxmox
nodes, and an admin console for all management work. This is Proxmox in its simplest form
in a production environment. This type of network can be used as a learning platform or in
a very small business environment with less demanding workload. Internet connectivity is
provided to the second subnet directly from the firewall with a second NIC, as shown in the
following diagram:

Network of Virtual Networks Chapter 8

[249]

Network #2 – the multi-tenant environment
This network setup is almost the same as the previous network with the added benefit of a
fully multi-tenant virtual platform. In a physical firewall, we can only add a very small
number of NICs to provide internet connectivity to isolated subnets. Using a virtualized
firewall, we can add as many firewalls or vNICs as we want. This setup is especially useful
when multiple, isolated client subnets need to be hosted and each subnet requires its own
firewall control for filtering purposes. In this example, vmbr0 is directly served by the
physical firewall. The bridges vmbr1 and vmbr200 have their own virtualized firewalls. The
firewalls also act as bridges between bridges. For example, the firewall for the subnet 2 has
two vNICs. One of these setups was WAN, where vmbr0 acts as an internet provider. The
second vNIC is LAN facing, which serves the subnet 2.

This is a common scenario for infrastructure service providers who host virtual networks
for multiple clients. Since multiple companies can access their virtual networks remotely, it
puts extra workload on the physical firewall. Single-point firewall failure should be avoided
at all costs by creating a cluster of physical firewalls to provide load balancing and failover
firewall service.

Network of Virtual Networks Chapter 8

[250]

Never use a virtualized firewall on the same cluster to connect to the
internet directly. Always use separate physical hardware as the main
firewall to act as a barrier between the internet and internal network.

For firewall virtualization, pfsense is a great choice to set up. It is easy to set up, yet
extremely powerful and customizable. Get pfsense and more information from the official
link at https:/​/ ​www. ​pfsense. ​org/ ​.

The following diagram is an example of a multi-tenant virtual environment:

https://www.pfsense.org/
https://www.pfsense.org/
https://www.pfsense.org/
https://www.pfsense.org/
https://www.pfsense.org/
https://www.pfsense.org/
https://www.pfsense.org/
https://www.pfsense.org/
https://www.pfsense.org/
https://www.pfsense.org/

Network of Virtual Networks Chapter 8

[251]

Network #3 – academic institution
This network diagram is an example of an academic institution network. The following
diagram shows network connectivity between the admin office, library, and a remote
campus. There are two physical firewalls providing internet connectivity redundancies. The
main virtual network consists of the database server, file server, accounting server, and
library catalog server. The database server and the file server are connected with the bridge
vmbr0. The accounting server is connected with the bridge vmbr10 and VLAN ID 10. The
library server is connected with the bridge vmbr20 and VLAN ID 20. The main switch is set
up with VLAN 10 and 20. The library switch is set up with VLAN 20. In this setup,
accounting server data goes straight to the admin office and the library catalog server data
goes to the library building without causing additional stress to the network. Remote
campus students and staff can access the main campus network through VPN, thus
eliminating the need to set up a separate virtual environment.

Of course, the following diagram is a very simplified form of the actual network topology of
an academic institution. But the basics of using VLANs and bridges are the same for any
network size:

Network of Virtual Networks Chapter 8

[252]

A multi-tenant virtual environment
Multi-tenancy is a very frequently used word in the world of cloud computing, where a
virtual environment is regularly used by different clients from different organizations set
up with fully isolated networks. Multi-tenancy is an integral part for a service provider who
provides Infrastructure as a Service (IaaS) to many clients.

To know more about cloud computing, visit
http://en.wikipedia.org/wiki/Cloud_computing.

In this type of setup, the service provider hosts or rents out computing time and storage
space to their clients. Because of the standard monthly subscription or SLA-based payment
method required for this type of service, multi-tenancy quickly gained popularity. Basically,
a multi-tenant virtual environment is where several isolated networks coexist on the same
platform without interfering with one another. Almost all public datacenters are multi-
tenancy platforms.

Multi-tenancy is not new in the world of information. The first multi-tenant environment
appeared back in the 1960s, when companies rented processing time and storage space on
mainframe computers to reduce the giant expenses of mainframe operation. The virtual
environment only augmented the same idea exponentially by leveraging all the
virtualization features Proxmox provides. By combining virtualization with cloud
computing, multi-tenancy is able to get a very strong footing to serve better and serve more
customers without increasing financial overheads. Prior to virtualization, the physical space
and power requirements to host customers in an IaaS environment meant it was rare and
cost prohibitive, thus not many people enjoyed its benefit.

The Proxmox hypervisor is capable of setting up a stable and scalable multi-tenant virtual
environment. All the networking components we have seen so far, such as vNIC, virtual
bridge, and VLAN, are the building blocks used to set up a multi-tenant virtual
environment. Once we understand the relationships between virtual machines and virtual
bridges, it is fairly easy to set up a multi-tenant virtual environment with Proxmox.

When setting up a multi-tenant virtual environment, it is very important
to take special care so that one network's traffic does not get intercepted
by another network. Without a proper VLAN and subnet, it is possible for
one network to sniff network packets on the entire virtual environment,
thus stealing data from other tenant organizations on the network.

http://en.wikipedia.org/wiki/Cloud_computing

Network of Virtual Networks Chapter 8

[253]

A multi-tenant network diagram
The following is an example of a network diagram of a typical cloud service provider who
provides IaaS to their clients. The entire client network is virtualized within the service
provider's virtual environment:

Network of Virtual Networks Chapter 8

[254]

On the client side, they only have simple desktop computers and mobile devices to access
their virtual cloud resources, such as desktop, storage, and processing power. Clients access
these resources through virtual means, such as Virtual Network Computing (VNC),
SPICE, or Remote Desktop Protocol (RDP).

Virtual networks are isolated with separate subnets. VLANs are set up (not shown in the
diagram) to reduce mass broadcast traffic. All virtual machine data is stored on a separate
storage cluster with full redundancy. A backup cluster does a regular backup of all virtual
machines, and granular file backup with histories are done with a third-party backup
software. A virtual firewall cluster is set up in between the virtual environment and the host
Ethernet interface to provide internet connectivity to all client virtual machines. Each
virtualized firewall has several vNICs to connect to each subnet.

Since the firewall is virtualized, we can add any number of virtual network interfaces
without worrying about running out of physical slots. A virtualized clustered firewall
provides maximum uptime. Each company network in this example has its own virtual
bridge, which only talks to that company's virtual machines and firewall interface,
eliminating any chance of packet sniffing by other company networks.

Packet sniffing is a process when data packets passing through a network
interface are captured and analyzed. Packet sniffer software can be placed
in a subnet to capture data. This is a common practice of someone with
malicious intentions to capture sensitive unencrypted data passing
through, such as usernames and passwords in clear text.

This environment is serving multiple clients or organizations, so uptime is a big concern. To
eliminate this issue, the entire virtual environment is replicated to another datacenter to
ensure 99.9 percent uptime. The previous diagram is an overly simplified version of what
really goes on inside a very busy Proxmox virtual environment. Studying this diagram will
give a clear understanding of virtual network mechanics. From the previous diagram, we
can see that this network environment heavily uses virtual bridges. So, it is imperative to
understand the role of bridges and plan out a draft diagram before actually setting up this
level of a complex virtual network.

When working with a complex virtual network, always keep a network
diagram handy and update it whenever you make any changes. An up-to-
date network diagram will help greatly to have total control over a virtual
network. Especially when any issue arises, it is easy to pinpoint the cause
of the issue with a diagram.

Network of Virtual Networks Chapter 8

[255]

Summary
We were very busy in this lively chapter. We looked at the differences between physical
and virtual networks. We learned about the network components that make up a Proxmox-
based virtual network. We also learned about Open vSwitch and its components to create a
really complex virtual network. We even got to analyze a few network diagrams from the
basic to the advanced to get a better understanding of how the Proxmox virtual network
really comes to life.

Proxmox provides all the tools we need to build any level of virtual network. It is up to the
network administrator's imagination, the company's budget, and the need to foresee how
all pieces should come together to form a well-designed and efficient virtual network. The
best part is that any mistake is easily correctable in a virtual environment. We can always
go back and change things until we are satisfied. For this very reason, a virtual network is
always evolving. Over time, a virtual network becomes an extension of the network
administrator's mental picture of the network. The configurations and design of a virtual
network infrastructure can give us a window into how that administrator thinks and the
logic they used to construct the environment.

In the next chapter, we are going to learn all about the built-in Proxmox firewall and learn
how to protect from the whole cluster down to a single virtual machine.

9
The Proxmox VE Firewall

The Proxmox VE firewall is a security feature that allows easy and effective protection of a
virtual environment for both internal and external network traffic. By leveraging this
firewall, we can protect VMs, host nodes, or the entire cluster by creating firewall rules. By
creating rules at the virtual machine level, we can provide total isolation for VM-to-VM
network traffic, including VM-to-external traffic. Prior to the Proxmox VE firewall, security
and isolation were not possible at the hypervisor level. Keep in mind that the built-in
Proxmox firewall should not be a substitute for a VM-level firewall. We must still apply a
firewall policy inside a guest VM, but the hypervisor-level firewall provides an added layer
of protection should the VM operating system firewall be misconfigured or not configured
at all. This also creates added management overhead because network administrators or
managers must now open or close ports or apply firewall policies at the hypervisor level. In
this chapter, we will cover the following topics related to the Proxmox VE firewall:

Exploring the Proxmox VE firewall
Configuring the cluster firewall rules
Configuring the host firewall rules
Configuring the VM firewall rules
Integrating a Suricata IPS
Enabling the IPv6 firewall
Firewall CLI commands

The Proxmox VE Firewall Chapter 9

[257]

Exploring the Proxmox VE firewall
The Proxmox VE firewall leverages iptables of each Proxmox node for protection. The
iptables is an application that allows you to manage rules tables for the Linux kernel
firewall. All firewall rules and configurations are stored in the Proxmox cluster filesystem,
thus allowing a distributed firewall system in the Proxmox cluster. The pre-firewall service
provided by Proxmox for each node reads the rules and configurations from the cluster
filesystem and automatically adjusts the local iptables. Rules can be fully created and
maintained by the Proxmox GUI or CLI. The Proxmox firewall can be used in place of a
virtualized firewall in the cluster.

Although the Proxmox firewall provides excellent protection, it is highly
recommended that you have a physical firewall for the entire network.
This firewall is also known as an edge firewall since it sits at the main
entry point to the internet. The internet connection should not be directly
connected to Proxmox nodes. A virtualized firewall should not be used as
a physical firewall substitute.

Components of the Proxmox firewall
There are several components that make up the Proxmox VE firewall. In order to effectively
implement a firewall in a Proxmox cluster, it is important to know the components and
their functions.

Zones
The Proxmox firewall protection area is divided into the following three logical zones:

Datacenter: Rules in this zone define traffic to and from all hosts and guests
Host: Rules in this zone define traffic to and from a cluster and Proxmox nodes
VM: Rules in this zone define traffic to and from each VM

The Proxmox VE Firewall Chapter 9

[258]

All rules in the Datacenter and host zones are cascaded. This means that a rule created in
the Datacenter zone will be applied to all hosts or nodes and all the VMs, while rules
created in a host zone will be applied to all VMs in that host or Proxmox node. Care must be
taken when creating rules in the host zone for particular VMs, because when the VM is
migrated to a different node, these rules in the previous node will not apply to the new
node for the VM. These host-level rules must be created in the new host, and only
then will they be applied to the VMs. Rules created for a VM apply to that VM only. There
is no rule cascading for the VM zone. The following diagram is a depiction of how Proxmox
firewall policies are laid out:

The Proxmox VE Firewall Chapter 9

[259]

Security groups
This allows the grouping of several firewall rules into one rule. This is very helpful when
the same multiple rules apply to several VMs. For example, we can create a Security Group
named webserver and add multiple rules to open ports, such as 21, 22, 80, 443, and so on.
Then, we can apply these security groups to any VMs used as a webserver. Similarly, we
can create a Security Group to open ports for servers for emails only. The following
screenshot shows an example of a webserver Security Group with rules to open ports for
FTP, SSH, HTTP, and HTTPS:

It should be noted that security groups are only created in Datacenter
zones. There are no security group creation options in the host or VM
firewall zone.

Security groups created in a Datacenter zone can be applied to any zones. Security groups
make the creation of rules for multiple nodes or virtual machines much easier. Details on
security group creation and management will be explained later in this chapter.

The Proxmox VE Firewall Chapter 9

[260]

IPSet
Sometimes, it is necessary to create firewall rules to restrict or allow traffic solely based on
IP addresses. An IPSet allows us to create firewall rules that may apply to multiple IP
addresses or IP subnets. For example, we can create an IPSet to allow access to the Proxmox
GUI from only a few limited IP addresses. The following screenshot shows an example of
an IPSet to allow the proxmoxgui access from only three IP addresses:

We can create rules based on individual IPs or the entire subnet using the CIDR format in
the rules.

An IPSet can be created in both the Datacenter and VM zones as the
option dialog boxes are also identical. An IPSet created in Datacenter
zones can be applied to any hosts and VMs in the cluster. But the IPSet
created under a VM zone is applicable to that VM only.

Another good example of IPSet usage is to create blacklists and whitelists of IP addresses in
Datacenter zones. A whitelist will allow the defined traffic while a blacklist will block
access to the defined IPs. Details on IPSet creation and management will be explained later
in this chapter.

The Proxmox VE Firewall Chapter 9

[261]

Rules
Rules are the heart of a Proxmox firewall configuration. Rules define the flow and type of
traffic that will be allowed or denied in the zones. There are two directions in which
network traffic can flow:

in: This refers to traffic inbound from anywhere to any zones except when
specific IP addresses or ports are mentioned
out: This refers to traffic outbound from any zones to anywhere except when
specific IP addresses or ports are mentioned

There are three types of action that a firewall rule can be applied to:

ACCEPT: This allows traffic packets matching the constraints in the rule
REJECT: Packets are rejected, and then an acknowledgment of the rejection is
sent to the sender
DENY: Drops traffic packets matching the constraints in the rule without sending
any acknowledgment to the sender

A typical rule will contain the direction of traffic, the action to apply to the traffic, and
which port or protocol the rule affects. The following screenshot shows rules to block traffic
on port 80 and allow it on port 443 for an example VM in our cluster:

The Proxmox VE Firewall Chapter 9

[262]

Protocols
In a Proxmox firewall, we can create rules based on various network protocols, such as TCP,
UDP, ICMP, and so on. Depending on application requirements, different protocol
selections may be necessary. For example, if we want to allow ping for a zone, we need to
create a rule with the ICMP protocol. Predefined protocols are available for selection
through the rules dialog box, as shown in the following screenshot:

The Proxmox VE Firewall Chapter 9

[263]

Macros
Macros are various precreated port configurations for most known services, such as HTTP,
HTTPS, SSH, FTP, Telnet, MySQL, NTP, VNC, and so on. Keep in mind when using the FTP
macro that it will only work in FTP passive mode. Each macro has a predefined protocol
and port number. So, when selecting a Macro, we do not have to define a protocol or port
number. In fact, when a Macro is selected through the drop-down menu, the Proxmox
dialog box automatically disables the protocol and port textboxes, as shown in the
following screenshot:

If we need to enter a custom port for any rule, then selecting the Macro
will not work. We have to manually define the port number and a proper
protocol for the rule.

The Proxmox VE Firewall Chapter 9

[264]

The following screenshot shows the Macro drop-down menu in the firewall Rule dialog
box:

The firewall feature can be accessed through the Firewall tab of all three zones,
Datacenter, host, and nodes, and virtual machines of both KVM and LXC.

The pve-firewall and pvefw-logger services
There are two services that enable the Proxmox firewall:

pve-firewall: This is the main service to run a firewall and it updates iptables
rules
pvefw-logger: This is responsible for logging all firewall traffic when logging is
enabled

The pve-firewall service is started automatically when a node is rebooted. We can also
manually start, stop, and restart the service using the following commands:

 # pve-firewall start
 # pve-firewall stop
 # pve-firewall restart

The Proxmox VE Firewall Chapter 9

[265]

To check the status of a firewall service, we can use the following command:

 # pve-firewall status

When there are no issues in the firewall's operation, the output of the status command
will appear as follows:

 Status: enabled/running

Configuration files of a firewall
Although the Proxmox firewall can be managed entirely from the Proxmox GUI, at times
accessing the rules from the CLI may be necessary, especially when a cluster is locked out
due to the misconfiguration of firewall rules. All firewall configurations and rules follow
the same naming format, with the .fw extension. The firewall configuration and rule files
are stored in two different directories for all three zones:

 /etc/pve/firewall/cluster.fw

This is the data center configuration and zone rule file. All other data center-wide firewall
information, such as security groups and IPSets, are also stored in this single file. We can
enable or disable the data center-wide firewall by editing this configuration file:

 /etc/pve/nodes/<node_name>/host.fw

CAUTION!
Do not enable the data center-wide firewall before reading the Configuring
the data center-specific firewall section later in this chapter.

This is the configuration and rules file for a Proxmox node or host:

 /etc/pve/firewall/<vm_id>.fw

Each virtual machine, whether it is KVM or LXC, has a separate firewall configuration file
with its VM ID stored in the same directory the data center firewall file is stored.

When new rules are created or edited through the Proxmox GUI, these are the files that get
changed. Whether the changes are made through the GUI or CLI, all rules take effect
immediately. There are no reboots or restarting of a firewall service required.

The Proxmox VE Firewall Chapter 9

[266]

Configuring the data center-specific firewall
As mentioned earlier, data center-specific firewall rules affect all resources, such as clusters,
nodes, and virtual machines. Any rules created in this zone are cascaded to both hosts and
VMs. This zone is also used to fully lock down a cluster to drop all incoming traffic and
then only open what is required. In a freshly installed Proxmox cluster, the data center-wide
firewall option is disabled.

CAUTION!
Extra attention should always be used when creating data center-specific
firewall rules to prevent full cluster lockout.

Configuring the Datacenter firewall through the
GUI
The following screenshot shows the Firewall option for the Datacenter zone through the
Options tab by navigating to Datacenter | Firewall | Options:

The Proxmox VE Firewall Chapter 9

[267]

As we can see in the preceding screenshot, by default the Proxmox firewall for the
Datacenter zone is disabled with Input Policy set to DROP and Output Policy set to
ACCEPT. If we did enable this firewall option right now, then all inbound access will be
denied. You will have to be on the console to access the node. Before we enable this option,
we must create two rules to allow the GUI on port 8006 and the SSH console on port 22.

Creating the Datacenter firewall rules
To open the rule creation dialog box, we need to click on Add by navigating to the
Datacenter | Firewall menu. For the first rule, we are going to allow the Proxmox GUI on
port 8006, as shown in the following screenshot:

The dialog box for rules is identical for all three zones, so it is important to know the details
of the option items in this dialog box. The following table summarizes the purpose of the
text and drop-down list available in the rules dialog box:

Items Functions

Direction This is a drop-down list used to select the direction of the traffic
for the rule, and it is a required field.

Action This is a drop-down list used to select actions that need to be
taken, such as ACCEPT, DROP, or REJECT incoming or outgoing
traffic. This is a required field.

The Proxmox VE Firewall Chapter 9

[268]

Interface This is a textbox used to define the interface to apply this rule to.
This does not apply to the Datacenter zone. It is useful to define
this for a VM with multiple interfaces.

Source This is a drop-down list used to select a preconfigured IPSet or
textbox to type in the IP address where the traffic originates from.
We can also define a subnet in the CIDR format. When left blank,
it accepts traffic from all the source IP addresses. In our previous
example screenshot, we have selected IP set to allow a GUI
connection from specific hosts only.

Destination This is a drop-down list used to select a preconfigured IPSet or
textbox to type in the IP address of the destination device in the
cluster. When left blank, it accepts traffic from all the destination
IP addresses.

Enable This is a checkbox used to enable or disable the rule.

Macro This is a drop-down list used to select preconfigured macros. We
can also type the macro name, which filters the list of macros.

Protocol This is a drop-down list used to select protocols. We can also type
the protocol name, which filters the list of protocols.

Source port This is a textbox used to define the originating port number for
the incoming traffic. When left blank, it accepts traffic from any
ports. We can also define the port ranges, separated by a colon (:),
in this field. This source port field is also used for the outgoing
traffic when the traffic originates internally from a VM, node, or
cluster.

Dest. Port This is a textbox used to define the destination port of the
incoming traffic. When left blank, it accepts traffic from any port.
We can also define port ranges, separated by a colon (:), in this
field.

Comment This is a textbox used to write descriptions or any notes regarding
the rule.

The Proxmox VE Firewall Chapter 9

[269]

To allow the SSH console traffic, we are going to create a rule with the SSH macro. The
following screenshot shows the firewall feature of the Datacenter zone with two rules
created to allow access to the Proxmox GUI and SSH:

The Proxmox GUI can only be accessed from one IP address, which is
172.16.0.3, whereas SSH can be accessed from any IP address.
Remember that all data center rules are cascaded down to hosts and VMs.
In this scenario, SSH is open for all hosts and VMs in the cluster. In certain
situations, we may need to block SSH for certain VMs in order to increase
the security. If we keep the previous rule as it is, we will need to create a
separate VM-level rule to drop SSH traffic for all VMs. However, this can
become a tedious task since some VMs may require SSH access and there
can be dozens of VMs. A revised advanced rule to allow SSH access to
only Proxmox nodes would be to create an IPSet in Datacenter with IP
addresses for Proxmox nodes only, and then assign the IPSet as the
Destination for the rule.

Creating the Datacenter IPSet
The following screenshot shows the IPSet named proxmox_nodes with IP addresses for
three nodes in our example cluster:

The Proxmox VE Firewall Chapter 9

[270]

From the IPSet management page, we need to create the IPSet itself first, and then add IPs
from the right-hand side IP/CIDR option. IP addresses can be added separately or defined
in an entire block using the CIDR value. The IPSet's name can only be alphanumeric, with
two special characters: - and _. But when Proxmox displays the IPset in the drop-down list,
it adds + as a prefix. This is not part of the IPset's name. If a string is entered as capital
letters, it automatically gets changed to lowercase. The following screenshot shows the rules
dialog box, where we selected an IPSet for Proxmox nodes in Destination to allow SSH only
for Proxmox nodes:

This revised rule will ensure that SSH is only enabled for Proxmox nodes and not VMs. As
we can see, in the previous example, when creating rules in the Datacenter zone, it is very
important to think about the cascading effect of the Datacenter rules and how it can affect
nodes and VMs. It is best to use the Datacenter zone rules for cluster-related traffic and
not VMs in any nodes.

The Proxmox VE Firewall Chapter 9

[271]

After we have created rules to allow SSH and the Proxmox GUI, we are ready to enable the
Datacenter-wide Firewall through the Options menu. The following screenshot shows
the menu with the Firewall now Enabled:

The preceding screenshot shows a policy that will drop all incoming traffic, but outgoing
traffic will be permitted. To have a fully locked down and secured cluster, both policies
should be set to DROP. The reason to set the Output Policy to DROP is to prevent
malicious traffic leaving the network in the case of malware infection or there being any
compromised devices within the internal network. Alternatively, in a multitenant
environment, outgoing traffic should be firewalled. This way, we can control the type of
traffic that can leave a VM. An example of traffic that should be denied would be ICMP or
ping traffic, which will allow one VM to discover other devices in the network.

If both the inbound and outbound firewall rules are set to DENY or
DROP, you will likely have to configure all the allowed traffic, even
updates and common traffic. If you are implementing DROP for the Input
Policy in an already established Proxmox cluster, make sure that you first
create all the necessary rules for all VMs and nodes before enabling the
Datacenter-wide firewall. Failure to do so will cause all VMs and nodes
to drop connectivity.

The Proxmox VE Firewall Chapter 9

[272]

Creating aliases
Aliases make it simple to see what devices or group of devices are affected by a rule. We
can create aliases to identify an IP address or a network. They are similar to an IPSet, but
one alias only points to one IP address or network, whereas an IPSet holds multiple IP
addresses or networks. For example, in a scenario where we have a Proxmox network as
172.16.2.0/24 and Ceph public network as 192.168.20.0/24, we can create two
aliases using the alias creation dialog box by clicking on Add from the Alias menu, as
shown in the following screenshot:

The Proxmox VE Firewall Chapter 9

[273]

In the preceding screenshot, we created an alias named ProxmoxNet to identify the
network 172.16.2.0/24. Using the same dialog box, we will create another alias named
CephNet for the IP subnet 192.168.20.0/24. The following screenshot shows the Alias
window with both aliases created:

The advantage of having an alias is that whenever we create rules, we can use these aliases
instead of typing in the entire IP address. This is especially useful when using IPv6. Since
IPv6 addresses are quite long, we can create an alias to call the IP address in a rule
whenever we need them.

The Proxmox VE Firewall Chapter 9

[274]

This is also another way to identify a numeric IP address with text. Aliases are accessible
through the drop-down list for both Source and Destination from the rules dialog box. The
following screenshot shows the rule creation dialog box with the aliases in the drop-down
list for Source:

Aliases created in the Datacenter zone are useable throughout the cluster in both the host
and VM zones.

The Proxmox VE Firewall Chapter 9

[275]

Configuring the Datacenter firewall through the
CLI
The Proxmox firewall can also be managed entirely through the CLI by editing the firewall
configuration and rules files directly. The content of the configuration and rule files are laid
out in a very specific format. The following screenshot shows the
/etc/pve/firewall/cluster.fw file of the Datacenter zone after adding rules from
the previous section:

The Proxmox VE Firewall Chapter 9

[276]

As we can see, in the preceding screenshot, there are four segments in the firewall
configuration file for the Datacenter zone. They are as follows:

 [OPTIONS]

 [ALIASES]

 [IPSET <name>]

 [RULES]

 [group <name>]

[OPTIONS]
This area is used to enable or disable a Datacenter-wide firewall. Currently, our example
cluster has the default input/output policy, which is set to drop all incoming traffic while
allowing all outgoing traffic. If we were to change the input policy to accept all incoming
traffic, then the [OPTIONS] segment would appear as follows:

 [OPTIONS]
 policy_in: ACCEPT
 enable: 1

If due to firewall rules misconfiguration we locked ourselves out, we can disable the
Datacenter-wide firewall using the following option on the console:

 enable: 0

[ALIASES]
This segment shows all the aliases created in the Datacenter zone. It shows the name of
the alias and IP address or the network the alias belongs to. Each line is used for a separate
alias entry.

The Proxmox VE Firewall Chapter 9

[277]

[IPSET <name>]
This segment clumps all IPSets created under the Datacenter zone. It shows the name of
the IPSet and the IP addresses added in the set. In our example, we have two IPSets named
proxmox_nodes and proxmoxgui.

[RULES]
This segment contains all the firewall rules, one on each line. To disable any rule, we simply
need to put a | in front of the rule and save the configuration file. In the preceding
screenshot, the rule to allow ping is disabled in this way.

[group <name>]
This segment clumps all the security groups created in the Datacenter zone. It shows the
name of the security group and the rule added to the group. In the preceding screenshot,
we can see that we created a security group named webserver and added macro rules in
order to allow HTTPS, HTTP, SSH, and FTP traffic. We can also manually add rules in this
segment by defining a protocol and port. For example, if we want to allow the TCP traffic to
port 565 only from IP address 10.0.0.2, we will add the following line of code to
the webserver security group:

IN ACCEPT -source 10.0.0.2 -p tcp -dport 565

Configuring a host-specific firewall
Any rules created in the host zone only apply to the node where the rule itself was created
and the VMs in that host node. Rules for one node do not get replicated to the other nodes,
although the rule files are stored in the Proxmox cluster filesystem. There are no options to
create IPSet or security groups in the host-specific firewall option. We can only create
firewall rules.

The Proxmox VE Firewall Chapter 9

[278]

Creating host firewall rules
Creating new rules for the host zone is identical to the rule creation process that we have
already discussed in the Configuring the data center-specific firewall section earlier in this
chapter. Besides creating rules from scratch, we can also assign predefined rules in the form
of a security group to a node. We cannot create a new security group under the host
Firewall menu, but we can assign it some predefined rules. For example, earlier in this
chapter, we created a security group named webserver. If a Proxmox node is only going to
host VMs used for web servers, then we can assign the security group webserver to that
node, and all the rules will be cascaded into all the VMs in the host. Thus, we would save a
lot of time by not having to create separate rules for each VM.

To open the dialog box to assign a security group, click on Insert: Security Group from the
Datacenter | Node option. The following screenshot shows the dialog box with
webserver selected from the Security Group drop-down list:

We have to ensure that we enable the rule by clicking on the checkbox, and then we need to
click on Add to assign the security group. The following screenshot shows the rule added to
the pmx-01 node:

The Proxmox VE Firewall Chapter 9

[279]

Options for the host zone firewall
The Proxmox node firewall has several items under the Options tab. Most of the items can
be left at their default values, as shown in the following screenshot. However, an
understanding of this item will aid in combating security through the cluster. The following
screenshot shows the Option items with default values for an unmodified Proxmox node:

To change the settings of any option item, we need to select the line item, and then click on
the Edit button.

Enable a firewall
By default, all Proxmox nodes have the Firewall option enabled. To disable a Firewall for
the node completely, select No for this option.

The Proxmox VE Firewall Chapter 9

[280]

The SMURFS filter
By default, the SMURFS filter is Enabled. By nature, Smurf is a distributed denial-of-
service (DDoS) attack. In this attack, an attacker sends a very large number of ICMP data
packets with the victim's spoofed IP address as the source, and it is broadcast to a network
using the broadcast address. Generally, all network devices answer an ICMP ping. During a
Smurf attack, the victim's device gets flooded by ICMP responses. If there are a large
number of devices on the network, then the flooding becomes extreme, making the
victimized device unresponsive. This is why this filter should remain enabled at all times.

The TCP flags filter
In simple terms, TCP flags are control bits that indicate how TCP packets should be handled
by the client. These control bits or indicators reside in the TCP header. There are a total of
nine control bits with one bit for each flag. The full description of how exactly these TCP
flags work is beyond the scope of this book since TCP is a vast subject of various
complexities. Here, we will only see what those TCP flags are and how the Proxmox
firewall handles TCP flag filtering. The following table is a summary of the TCP flags and
their functions:

TCP flag Function

URG—1 bit This indicates that the TCP packet is urgent.

ACK—1 bit This indicates the acknowledgment field. After the initial SYN for
all packets, they are usually followed by this flag.

PSD—1 bit This flag asks for the buffer data to be pushed as soon as possible
to the receiving side of the client application.

RST—1 bit This flag indicates the TCP connection reset.

SYN—1 bit This flag indicates a synchronized sequence number before
initiating a TCP connection. Only the first packet that is sent from
a source usually has this flag.

FIN—1 bit This flag indicates the end of TCP packets.

The Proxmox VE Firewall Chapter 9

[281]

TCP flags are useful to detect and pinpoint oddly-behaved TCP packets and determine a
possible intrusion. Arguments for TCP flag filtering are added to the firewall rules right
after the -p syntax, as shown in the following code:

[RULES]
IN DROP -p tcp -tcp-flags SYN,ACK SYN -dport

As of Proxmox VE 5.0, there are no options used to manually add TCP
flags to filter through the GUI. We can add them through the CLI but this
makes the rule disappear from the GUI.

By default, TCP flag filtering is disabled in the Proxmox VE. We can enable it to let the
Proxmox firewall automatically filter odd packets with out-of-sync bits. All data packets
traversing through the network have a uniform SYN behavior. Odd packets usually indicate
that they are from a bad source.

NDP
Neighbor Discovery Protocol (NDP), is an IPv6-specific option. Unlike IPv4, IPv6 does not
use the ARP protocol, but uses NDP instead. NDP is also used for IPv6 auto configuration
and advertising router data packets. By default, this option is enabled for both host- and
VM-specific Proxmox firewalls. If you are not going to use IPv6 at all and have no future
plans to do so, this option can be disabled.

nf_conntrack_max
This value defines the maximum size of a netfilter connection tracking table. This table
keeps a record of all live connections and deletes them when a connection is closed. By
default, the size of this table is 65,536 bytes. While for most of the nodes, this is perfectly
fine, for high-volume connection servers, such as DNS or web server, this table may become
full quickly. For a Proxmox node, which holds lots of high-traffic VMs, this value needs to
be increased. We can check the current value of nf_conntrack_max using the following
command:

 # sysctl -a | grep nf_conntrack_max

The Proxmox VE Firewall Chapter 9

[282]

The following command will show you the number of current live connections in the node:

 # sysctl -a | grep nf_conntrack_count

The following screenshot shows the connection count for our example node pmx-01:

Note that if the tracking table is full due to many live connections, then the
node will drop all new connection packets.

nf_conntrack_tcp_timeout_established
This node only keeps track of the netfilter connections if they live. Dead connections are
deleted automatically from the table. This deletion happens based on the set timeout period.
The longer the timeout period, the longer the record of the connection will stay in the
tracking table. The value of this option is in seconds. By default, the value is set to 4,32,000
seconds or 12 hours. We can check the current value using the following command:

 # sysctl -a | grep nf_conntrack_tcp_timeout_established

By reducing this value, we can keep the tracking table lean which is faster for a high-traffic
node. It should be noted here that lowering this value might also break long running idle
TCP connections.

The Proxmox VE Firewall Chapter 9

[283]

log_level_in/out
A firewall is only as good as its logging capability. It is only by going through the log that
we can see what is being blocked and what is not. Proxmox comes with a custom service
named pvefw-logger, which is based on the netfilter logging daemon. The sole purpose of
this service is to log a connection activity based on the set firewall rules. Through the
firewall's Options tab, we can set logging at various levels of verbosity. There are eight
levels of logging available for the iptable-based firewall. The following table shows the
iptable logging levels and their availability in the Proxmox firewall:

Log Level Type

Level 0 Emergency Available in Proxmox

Level 1 Alert Available in Proxmox

Level 2 Critical Available in Proxmox

Level 3 Error Available in Proxmox

Level 4 Warning Available in Proxmox

Level 5 Notice Not available in Proxmox

Level 6 Info Available in Proxmox

Level 7 Debug Available in Proxmox

In addition to these levels, Proxmox also has the nolog option. This disables all logging for
a resource. The log level info is used the most, as it logs all the good and bad connections.
This way, we can see exactly what is being blocked and allowed. However, the info log
level also creates many log entries in a very short period of time. As a good rule of thumb,
always select some form of logging when enabling a firewall.

tcp_flags_log_level
Similar to the standard log level, we can also enable different log levels for the TCP flags. If
the TCP flags filter is not enabled, this will not produce any log entries. When enabled, we
will see the TCP flags filter logged in the log window.

The Proxmox VE Firewall Chapter 9

[284]

smurf_log_level
Like the TCP flags log, this also shows log entries for Smurf attacks. This also follows
various log levels.

Configuring the host firewall through the CLI
We can also configure and manage the host zone firewall through the CLI. The firewall
configuration file for the host is in /etc/pve/local/host.fw. The following screenshot
shows the content of the host.fw file:

As we can see in the preceding screenshot, there are only two segments in the firewall
configuration file for the host zone. They are as follows:

 [OPTIONS]

 [RULES]

The functions of these segments are exactly the same as the segments in the Configuring the
Datacenter firewall through the CLI section earlier in this chapter. Note that there are no
segments for security group or IPSet. This is because these features are not present in the
host firewall zone.

The Proxmox VE Firewall Chapter 9

[285]

Configuring a VM-specific firewall
Rules created for a VM only apply to that particular virtual machine. Even when the virtual
machine is moved to a different node, the firewall rule follows the VM throughout the
cluster. There are no rules cascading from this zone. Under the VM firewall feature, we can
create rules, aliases, and IPSets, but we cannot create a security group. The firewall
management is the same for both the KVM virtual machines and LXC containers. We can go
to the firewall feature of a VM by navigating to the VM | Firewall menu:

Creating VM firewall rules
Creating new rules for a VM is identical to the rule creation process that we have already
seen in the Configuring the Datacenter firewall through the CLI section earlier in this chapter.
Besides creating rules from scratch, we can also assign predefined rules in the form of a
security group to a VM. The preceding screenshot shows that our example VM has three
firewall rules to allow standard web server and HTTPS traffic, but drop all HTTP or port 80
traffic.

Creating aliases
An alias for a VM zone serves the same purpose as the alias for the Datacenter zone. The
alias creation process is also identical to the Configuring the Datacenter firewall through the CLI
section that we have seen earlier in this chapter. Aliases created under a VM stay with that
particular VM only. An alias for one VM can be used in another VM.

Creating IPSets
Like aliases for a VM, an IPSet created under a VM also stays with that particular VM. The
IPSet creation process is identical to the IPSet for the Datacenter zone we have already
seen in the Configuring the Datacenter firewall through the CLI section earlier in this chapter.

The Proxmox VE Firewall Chapter 9

[286]

Options for a VM zone firewall
All the option items under the VM zone Options menu are the same as items for the
Datacenter and host zone already described, except for the DHCP and MAC filters. The
following screenshot shows the Options items for our example VM 100 (kvm-1):

Enable DHCP
This option is used for a VM that is configured as a DHCP server. A DHCP server uses the
UDP ports 67 and 68 to complete IP requests from clients. Instead of manually opening
these ports, we can enable this option to let all DHCP-related pass to and from the VM. By
default, DHCP is Disabled.

The MAC filter
When this option is Enabled, it prevents the VM user spoofing their own MAC address of
the virtual network interface and sending out traffic. This filter will drop the packets from
the spoofed MAC address. By default, this option is Enabled.

The Proxmox VE Firewall Chapter 9

[287]

Input/output policy
These options are to enable default firewall behavior for the virtual network interface. For
example, if you select the policy to DROP, by default it will block all traffic. We will have to
add rules to open required ports. By default, the Input Policy is to DROP all incoming
traffic.

Configuring a VM-specific firewall through the
CLI
As with other firewall zones in Proxmox, we can also configure and manage a virtual
machine-specific firewall through the CLI. The configuration file for each VM is in
/etc/pve/firewall/<vm_id>.fw. All segments in the configuration file are the same as
the Datacenter or host zone configuration. The following screenshot shows the content of
a firewall configuration file for VM 100 (kvm-1):

Integrating a Suricata IDS/IPS
The security protection of the Proxmox VE firewall can be further enhanced by configuring
an intrusion detection and prevention system such as Suricata. It is a high-performance
IDS/IPS engine that is able to protect a virtual machine by rejecting traffic that may be
possible intrusions. Currently, Snort and Suricata are two open source mainstream IDS/IPS
available, although there are a few others. One of the primary advantages of Suricata is that
it is multithreaded, whereas Snort is single-threaded. Suricata is under rapid deployment
and has gained popularity in a short amount of time.

The Proxmox VE Firewall Chapter 9

[288]

By default, Suricata is not installed on a Proxmox node. It needs to be manually installed
and configured. As of Proxmox VE 5.0, Suricata can only be used to protect a virtual
machine and not any Proxmox host nodes.

Do not try to manually download the Suricata package from any other
source other than the Proxmox repository and install it on the Proxmox
node. It may break the system. Always use the apt-get installer in
Proxmox to install Suricata.

If you are new to Suricata, then visit the official Suricata site that will help you gain some
knowledge of Suricata as an IDS/IPS:

http:/​/​suricata- ​ids. ​org/ ​

Installing/configuring Suricata
We can install Suricata in a Proxmox node using the following command:

 # apt-get install suricata

After Suricata is installed, we have to load the netfilter queue subsystem's
nfnetlink_queue module using the following command:

 # modprobe nfnetlink

To ensure that this module gets loaded automatically whenever the node is rebooted, we
need to add it to the /etc/modules file. The installer installs all the necessary files for
Suricata, including Oinkmaster rules. All IDS/IPS engines are heavily dependent on rules.
These rules are precompiled and prepackaged in rule files. Oinkmaster is a script that
allows us to easily update and manage rules. It is mainly used by Snort but is also
supported by Suricata. Without these rules, Suricata will not perform anything. Visit the
official Snort site for information on rules at https://www.snort.org/.

There are no options to enable Suricata for a VM through the GUI. So, we have to manually
enable it through the CLI by editing the VM firewall configuration file in
/etc/pve/firewall/<vm_id>.fw. We need to add the following lines to the [OPTIONS]
segment of the configuration file:

 ips: 1
 ips_queues: 0

http://suricata-ids.org/
http://suricata-ids.org/
http://suricata-ids.org/
http://suricata-ids.org/
http://suricata-ids.org/
http://suricata-ids.org/
http://suricata-ids.org/
http://suricata-ids.org/
http://suricata-ids.org/
http://suricata-ids.org/
https://www.snort.org/

The Proxmox VE Firewall Chapter 9

[289]

The ips_queues option binds to a specific CPU queue of the virtual machine due to its
multithreaded nature. Available queues that Suricata should listen to are defined in
/etc/default/suricata, as follows:

NFQUEUE=0

The value is usually set based on the number of CPUs. For example, to use four CPU cores
for Suricata, we can use the value 3 for NFQUEUE. The default value 0 indicates that we only
use the first CPU, which is CPU 0.

Suricata will only work when listening on NFQUEUE. This is configured by default when
Suricata is installed on a Proxmox node. All traffic that is only accepted by the Proxmox
firewall gets passed to Suricata for inspection. All other dropped or rejected traffic does not
get passed to Suricata. The Suricata configuration files are in /etc/suricata/suricata-
debian.yaml. The default configuration should work in most cases.

It is easier to write your own custom rules for Suricata than it is for Snort. You can refer to
the excellent documentation on how to learn to write your own rules for Suricata at the
following link:

https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Suricata_Rules

We can start the Suricata service by running the following command:

 # systemctl start suricata

The following screenshot shows the command to check the status of the Suricata service and
displays the status information:

https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Suricata_Rules

The Proxmox VE Firewall Chapter 9

[290]

Limitations of Suricata in Proxmox
As mentioned earlier, there are no GUI options for Suricata in Proxmox. All configurations
are done through the CLI. Without a proper knowledge of IDS/IPS rules, it is very difficult
to create rules based on their own environments. Suricata cannot be used to protect any
Proxmox nodes, only virtual machines. This limitation may be due to the fact that IDS/IPS
can frequently consume a large amount of CPU resources. While for a dedicated firewall
appliance, this may or may not be an issue, for a hypervisor, where the CPU is shared
between the hypervisor itself and hosted virtual machines, this could be fatal due to CPU
overconsumption.

There are no dedicated log view options for Suricata as there are for the Proxmox firewall
through the GUI. All Suricata logs are stored in the /var/log/Suricata directory by
default. However, we can pass Suricata IPS logs to syslog by changing the configuration file
in /etc/pve/suricata/suricata-debian.yaml. We have to make the following
changes in order to pass the Suricata logs to syslog:

 # a line based alerts log similar to fast.log into syslog
 syslog:
 enabled: yes
 identity: "Suricata"
 level: Info

There are a few more options available to log the output in the same configuration file.
Some Proxmox users try to pass Suricata logs to a third-party solution using Logstash and
Kibana from Elastic (www.elastic.co). Suricata or any other IPS is a complex task to
manage on a day-to-day basis. Suricata is still in infancy in Proxmox. Over time, it may be
integrated with the GUI for easier management. But for now, using a dedicated firewall
appliance, such as pfSense, Untangle, ClearOS, or any other open source firewall may be a
better option to integrate Suricata in a network. Suricata is fully supported in pfSense with a
large amount of manageable features, all through the pfSense GUI dashboard.
Implementing an IDS/IPS system in a network is not optional but should be made
mandatory to protect it from any sort of intrusion.

http://www.elastic.co

The Proxmox VE Firewall Chapter 9

[291]

Summary
In this chapter, we learned about one of the most powerful features of Proxmox, the built-in
firewall. We learned what it is and how to implement it to protect the entire cluster,
Proxmox host nodes, and virtual machines. We learned how to manage the firewall rules
and configuration using both the GUI and CLI. Proxmox adds security where it is needed
the most. By leveraging a flexible and granular firewall protection at the hypervisor level,
we are now able to have a better-secured cluster. This is not to say that firewall policies are
not needed internally in each VM, but having a firewall built into the hypervisor offers an
extra layer of protection from an infrastructural point of view.

In the next chapter, we are going to learn about the Proxmox VE High Availability feature
for VMs, which has been completely redesigned from the ground up. The new changes
brought higher stability while making the management and configuration a much simpler
task.

10
Proxmox High Availability

In this chapter, we are going to see one of the most prominent features that make Proxmox
an enterprise-class hypervisor. Proxmox VE High Availability (HA) allows the cluster to
move or migrate virtual machines from a faulty node to a healthy node without any user
interaction. We will take a look at the following topics:

Understanding HA
Requirements for HA
Configuring Proxmox HA
Configuring the Proxmox HA simulator

Understanding HA
HA is a combination of components and configurations that allows continuous operation of
a computational environment. Basically, it means that even when unattended server
hardware goes bad in a live environment, HA can manage the remaining servers on its own
and keep a virtual environment running by automatically moving or migrating virtual
machines from one node to another, while minimizing downtime as little as possible. It
should be noted here that Proxmox HA does not provide zero downtime migration of VMs.
When a node with VM goes down hard, for obvious reason the VM becomes fully
inaccessible. What Proxmox HA does when that happens is, it automatically moves the VM
configuration files to member nodes and starts. A properly configured HA should require
very little actual user interaction during a hardware failure. Without HA in place, all nodes
will require constant monitoring by a network manager in order to manually move virtual
machines to healthy nodes when a node goes bad.

Proxmox High Availability Chapter 10

[293]

In a small environment, manually moving VMs is not a major issue, but in a large
environment with hundreds of virtual machines and nodes, constant monitoring can be
very time consuming. Although there can be monitoring software in place to automatically
alert administrators for any node failure, without HA, the administrator will have to
manually move or migrate any virtual machine from a faulty node. This can cause longer
downtime due to the network staff's response time. That's where the Proxmox HA feature
comes in. HA takes operator intervention out of the equation by simply moving or
migrating virtual machines to a node as soon as server hardware failure occurs.

HA in Proxmox
To set up functional HA in Proxmox, it is important to have all the virtual machines on
shared storage. It is crucial to understand that Proxmox HA only handles Proxmox nodes
and virtual machines within the Proxmox cluster. These HA features are not to be confused
with shared storage redundancy, which Proxmox can utilize for its HA deployment. High
availability in shared storage is just as important as Proxmox VMs' HA. A third-party
shared storage can provide its own HA features. So both the Proxmox cluster and shared
storage will need to be configured to provide a truly highly available environment. It is
beyond the scope of this book to go into the details of high-availability storage.

There can be levels of redundancy in a Proxmox computing node, such as the use of RAID,
redundant power supplies, aggregated network links, or bonds. HA in Proxmox is not a
replacement for any of these layers. It just facilitates redundancy features for virtual
machines to keep running during a node failure. Proxmox uses a software stack called HA-
manager to provide fully automated high availability from Proxmox virtual environments.

It should be noted that in a Proxmox node, a reboot due to an applied update will cause all
HA-enabled virtual machines to shut down and move to the next available Proxmox node
and restart. In such a situation, it may be necessary to manually live-migrate virtual
machines first before rebooting the node. But by using a service such as Kernel Care from
CloudLinux, we can mitigate reboots due to update because Kernel Care applies security
updates without ever needing to reboot a node. Find out more about this service
from https:/​/​www. ​cloudlinux. ​com/ ​all- ​products/ ​product- ​overview/ ​kernelcare. ​

https://www.cloudlinux.com/all-products/product-overview/kernelcare
https://www.cloudlinux.com/all-products/product-overview/kernelcare
https://www.cloudlinux.com/all-products/product-overview/kernelcare
https://www.cloudlinux.com/all-products/product-overview/kernelcare
https://www.cloudlinux.com/all-products/product-overview/kernelcare
https://www.cloudlinux.com/all-products/product-overview/kernelcare
https://www.cloudlinux.com/all-products/product-overview/kernelcare
https://www.cloudlinux.com/all-products/product-overview/kernelcare
https://www.cloudlinux.com/all-products/product-overview/kernelcare
https://www.cloudlinux.com/all-products/product-overview/kernelcare
https://www.cloudlinux.com/all-products/product-overview/kernelcare
https://www.cloudlinux.com/all-products/product-overview/kernelcare
https://www.cloudlinux.com/all-products/product-overview/kernelcare
https://www.cloudlinux.com/all-products/product-overview/kernelcare
https://www.cloudlinux.com/all-products/product-overview/kernelcare
https://www.cloudlinux.com/all-products/product-overview/kernelcare
https://www.cloudlinux.com/all-products/product-overview/kernelcare
https://www.cloudlinux.com/all-products/product-overview/kernelcare
https://www.cloudlinux.com/all-products/product-overview/kernelcare
https://www.cloudlinux.com/all-products/product-overview/kernelcare

Proxmox High Availability Chapter 10

[294]

How Proxmox HA works
When a node becomes unresponsive for various reasons, Proxmox HA waits for 60 seconds
before fencing the faulty node. Fencing prevents cluster services from coming online during
that time. Then, HA moves the VM to the next available node in the HA member group. As
of Proxmox VE 5.0, LXC containers cannot be live-migrated. So, HA will stop all LXC
containers and then move them to the next node. Even if the node with VMs is still powered
up but loses network connectivity, Proxmox VA will try to move all VMs out of the node to
a different node.

Once the faulty node comes back online, however, HA will not automatically move the
VMs back to the original node. This must be done manually. But a VM can only be moved
manually if HA is disabled for that VM. So we have to disable HA first and then move to
the original node and enable HA on the VM again. As we can see, Proxmox HA likes to
manage everything on its own, although it adds little annoyances to manually performing
certain functions. HA is focused on maintaining uptime, which it does suitably. Later in this
chapter, we will see how to configure HA for virtual machines.

Requirements for HA setup
In Proxmox 4.0, the HA feature has been completely redesigned from the ground up,
making it much simpler to configure and use. There are a few requirements that the virtual
environment must meet before configuring Proxmox HA. They are as follows:

At least three nodes
Shared storage
Fencing

At least three nodes
HA must be configured in a cluster with a minimum of three nodes because with three
nodes or more, achieving a quorum is possible. Quorum is the minimum number of votes
required for Proxmox cluster operation. This minimum number is the total vote by a
majority of the nodes. For example, in a cluster of three Proxmox nodes, a minimum vote of
two Proxmox nodes is required to form a quorum. In a cluster with eight nodes, a minimum
vote of five Proxmox nodes is required to form a quorum. With just two nodes, the ratio of
votes will always be 1:1, so no quorum is possible.

Proxmox High Availability Chapter 10

[295]

Shared storage
During a node failure, VM configuration files are moved to the next member node in the
HA and auto started. Note that this migration applies to the configuration files only and not
the virtual disk image. A VM cannot be started by HA when the disk image is not stored on
shared storage. When a VM is stored locally, then HA will only move the configuration file
and will be unable to move the disk image. This will produce error when HA tries to auto
start the VM.

Do not try to enable HA for any locally stored VM. The HA will forcefully
move the VM configuration file and not move the location of the disk
image.

Fencing
Fencing is a concept of isolating a node or its resources during node failure so that other
nodes cannot access the same resources, putting them at risk of data corruption. In
Proxmox, fencing prevents multiple nodes from running on the same virtual machine or
cluster-specific services. Fencing ensures data integrity during a node failure by preventing
all nodes from running on the same virtual machine or cluster services at the same time.

As of Proxmox VE 5.0, a separate fencing device used to configure Proxmox HA is no longer
required. Fencing now uses a hardware-based watchdog or a Linux softdog. A Linux
softdog is a software version of a traditional watchdog. Most modern server BIOSes have
the watchdog functionality, but it is normally disabled. When enabled, this will reboot
server nodes after a certain period of inactivity. Proxmox HA will always check whether
there is a hardware watchdog, and if not, it will automatically use a softdog. The use of a
softdog now allows HA to be implemented in a nested virtual environment. This is helpful
to set up a virtualized Proxmox environment to learn and test Proxmox HA without
effecting changes on the main systems.

BIOS power-on feature
Before we set up fencing and Proxmox HA, we have to make sure that nodes can boot
immediately after a power cycle or power loss. Usually, this feature is disabled. The
following screenshot shows this BIOS feature:

Proxmox High Availability Chapter 10

[296]

It is important that the BIOS power on functionality be tested and verified.
To do so, unplug the power cord, then plug it back again to see whether
the node powers up. Without this feature enabled, the node will not be
able to auto boot or power cycle using Proxmox HA fencing.

Configuring Proxmox HA
Thanks to the new version of HA in Proxmox, all configuration of Proxmox HA can be done
from the GUI. The HA feature is available by navigating to Datacenter | HA. This is the
menu where we will perform all HA-related configuration and management. The following
screenshot shows the Proxmox HA management interface:

The HA menu
The HA menu is divided into two parts and two submenus where we can perform all
configuration and management tasks.

Proxmox High Availability Chapter 10

[297]

Status
The Status shows the cluster-wide quorum formation for the HA to function properly and
the status of member nodes configured in HA. A clean-installed Proxmox cluster will show
only one line item for a healthy quorum. Once the new member nodes are added to the HA
configuration, this status menu will show running states of all the nodes and the virtual
machines that have HA enabled.

The Resources menu
This is the menu where we enable HA for a virtual machine or container. Click on Add to
open the VM resource dialog box. The following screenshot shows that we are configuring
our example VM 100 with the HA feature:

Max. Restart and Max. Relocate are two new options added to the HA resource-adding
dialog box. The value for Max. Restart is the number of times Proxmox HA will try to
restart services and/or the VM after migrating should any failure occur. The Max. Relocate
value is to define the number of times HA will try to relocate VM services to another node
before quitting.

Request State is a drop-down menu to define what action HA should take after the VM is
migrated to another node during a failure. We can select started to start the VM after
migration, stopped to migrate the VM but not start, and disabled to disable the HA feature
for the VM. This is useful when we want to temporarily disable the resource and we may
use it in future.

After adding a VM into HA, we may see a number of error messages showing failure to
enable HA on that VM. The following screenshot shows some example errors we may
encounter after adding VM 100 into the HA:

Proxmox High Availability Chapter 10

[298]

From the errors we can see that to enable HA for a VM, there are certain criteria that need to
be met. For example, NUMA must be enabled and the VM memory allocation must be at
least 1024 MB. The following screenshot shows the Resources menu with the example
vm 100 assigned to the HA group after we enabled NUMA and allocated 1024 MB of
memory:

Proxmox High Availability Chapter 10

[299]

The Groups menu
This menu is used to create and manage different groups of Proxmox for HA. The most
relevant use of groups is for software solutions or infrastructure VMs that should always be
running together for continuous functionality in the event of a failure: a domain controller,
file server, and so on. We can create multiple groups through this menu. A VM assigned to
a particular group will only be moved within the member nodes in that group. For example,
if we have six nodes, out of which three nodes have enough resources to run the database
virtual server and the other three nodes to run virtual desktops or VDI solutions, we can
create two groups for which the database virtual servers will only be moved within the
nodes that we have assigned for that group. This ensures that a VM is moved to a correct
node that will be able to run the VMs. To open the group-creation dialog box, simply click
on Create in the Groups submenu. The following screenshot shows the groups dialog box
for our example group named Pmx_HA_Test:

The following are the items available in the HA Group dialog box.

Proxmox High Availability Chapter 10

[300]

ID
This is a textbox used to enter a name for the HA Group. The ID string can be
alphanumeric text with only underscore (_) as the special character.

Note that once we create a group, we cannot change the group name. We
will have to delete the group and create a new one with a proper ID if we
need to change the group name.

Node
This is a list of all the Proxmox nodes in the cluster. We can select multiple nodes in the list.
In order to create the group, we need to select at least one node. Unlike the ID textbox, we
can change the assigned member nodes for the group even after the group has been created.

The restricted checkbox
This is a checkbox used to allow VMs to be moved by Proxmox HA only within the
available member nodes in the HA group. If there are no available member nodes, then the
VMs will be stopped automatically. This option is not enabled by default.

The nofailback checkbox
This is also a checkbox used to prevent the group from automatic failback when a new node
joins the cluster. This is not enabled by default. Unless there is a strict requirement, this
option should not be enabled. One scenario of using this is when an administrator is trying
to diagnose a node or network failure. By enabling this option, we can prevent recovered
VMs or services from moving back into the original node.

Proxmox High Availability Chapter 10

[301]

The following screenshot shows the Groups submenu interface with our example group
created:

At first glance, using groups may seem like just another layer of complexity, but proper use
of groups really can help us create a highly complex automated administrator. Groups allow
us to create multiple layers of failover, bind certain services to specific nodes, and distribute
VMs to specific nodes to name a few. Let's look at the following scenario to better
understand how groups can be used in a complex environment.

For this scenario, let's assume that this is a three-node Proxmox cluster where node #1 is
powerful enough to run all VMs, whereas node #2 is powerful enough to run half and node
#3 only a handful of VMs. In this scenario, creating just one group will try to move all VMs
to one of the nodes, resulting in half of the VMs remaining powered off due to shortage of
resources. But if we create two groups, one to move half of the VMs to node #2 and another
group to move the remaining VMs to node #3, we can easily create an HA strategy to
handle node failure automatically.

Another scenario is to use groups to create different HAs for different VM groups. For
example, we can have an HA group only to handle SQL database cluster VMs whereas
another group will handle all VMs functioning as file servers. Due to the differing
workloads of database and file servers, it may be more efficient to run them on specific
groups of Proxmox nodes.

Proxmox High Availability Chapter 10

[302]

The Fencing menu
As of Proxmox 5.0, there is no use for this menu. It only displays the fencing device being
used by Proxmox HA. Proxmox uses a hardware watchdog and software Linux watchdog
for fencing. The following screenshot shows the Fencing menu interface:

At this point, we've created a Proxmox HA group and added a VM to the group to be
managed by HA. Our VM is currently in the pmx-01 node and is ready to be managed by
Proxmox HA. The following screenshot shows the Status menu of HA:

Proxmox High Availability Chapter 10

[303]

As we can see, in the preceding screenshot, the Status menu shows the current state of the
entire HA feature. For our example cluster, it shows the following vital information:

Cluster quorum is established
The master node pmx-01 of the HA group is active and the timestamp of the last
heartbeat has been checked
All the three member nodes of the HA group are active and the timestamp of the
last heartbeat has been checked
The VM service for 100 has been started on the first node, pmx-01

Testing Proxmox HA configuration
To test whether the HA is really working, we will disconnect network connectivity for the
node pmx-01 and observe the Status window for HA changes. The Status window displays
the status of resources in real time. The following screenshot shows the HA status after
interrupting network connectivity:

In the preceding screenshot, we can see that our example node pm4-1 is no longer
connected to the cluster, and HA does not get any acknowledgement from the node. After
60 seconds, Proxmox HA promotes the next available node in the HA group as the master
and migrates any HA-enabled VM. In our example cluster, after disconnecting node
pmx-01, the HA migrating the VM is as shown in the following screenshot:

Proxmox High Availability Chapter 10

[304]

After the VM resources are fenced, in the next stage, the VM is fully stopped. Since the node
itself is down, the VM cannot be live-migrated because the memory state of the running VM
cannot be retrieved from the down node. After the VM is stopped, it is moved to the next
available node in the HA group and started automatically. The following screenshot shows
that the VM has now moved to node pmx-02 and has been started:

Proxmox High Availability Chapter 10

[305]

After the failed node comes back online, the VM will continue to run on the node it was
migrated to by HA. From the Status interface we can see that the second node pmx-02 is
now active while the other two nodes are idle:

It is possible that Proxmox HA will produce an error during the automatic VM move for
various reasons. After any error, Proxmox HA will make several attempts with the restart
and relocate policy to recover from the error. If all attempts fail, Proxmox HA puts the
resource in the error state and will not perform any automated tasks for it. For this reason,
even after the error has been addressed and fixed, HA will not automatically start the VM.
We will manually have to start it. This is one of the unintended side effects of enabling
Proxmox HA where it may not behave as expected after an error has occurred.

If the VM is automatically moved after a node failure and then restarted on a new node, this
completes the entire process of the Proxmox HA configuration.

Proxmox High Availability Chapter 10

[306]

The Proxmox HA simulator
Although Proxmox HA has become far easier to configure and manage, it is still a complex
topic to grasp. With the use of software-based watchdogs, it is entirely possible to
configure, test, and learn Proxmox HA in a virtualized environment before implementing it
in a production cluster. There is also a simulator for Proxmox HA that we can use to see HA
in action without setting up any clusters. The simulator allows us to see the HA
configuration in action and see how the states change at different stages.

Configuring the Proxmox HA simulator
The Proxmox HA simulator is not shipped with the distribution and needs to be manually
installed. Along with the simulator package, we also need xorg and xuath because the
simulator requires X11 redirection, which is also known as X11 forwarding. We can use the
following commands to install the packages:

 # apt-get install pve-ha-simulator
 # apt-get install xorg
 # apt-get install xauth

We can access the simulator from both Linux and Windows operating systems. If we log in
from Linux, use the standard SSH command with the -Y option, as shown in the following
command:

 # ssh root@<pmx_node> -Y

For Windows, we can use an advanced terminal, such as MobaXterm, which can be
downloaded from the following link:

http://mobaxterm.mobatek.net/

http://mobaxterm.mobatek.net/

Proxmox High Availability Chapter 10

[307]

After we access the Proxmox node through Linux or Windows, we need to create a
directory, which will be used as the working data directory for the simulator. After the
directory is created, we can run the simulator, pointing it to the working directory. The
following screenshot shows the SSH console with the directory created and simulator
started using the MobaXterm program:

After the command is executed, the Proxmox HA simulator is started in a graphical
interface, as shown in the following screenshot:

As we can see, in the preceding screenshot, the simulator provides a three-node HA setup
with two VMs per node. We can simulate a node or network failure using the Power or
Network buttons and watch HA in action. Before HA takes action, we have to enable it for
each VM. We will see that as various HA states change, the configuration entries of the HA
also change in real time. This simulator will aid in understanding Proxmox HA better
through practice. The cluster log shows line-by-line info as you try and test different HA
scenarios.

Proxmox High Availability Chapter 10

[308]

Summary
In this chapter, we learned about the different aspects of the recently redesigned and
enhanced Proxmox HA feature and how it can benefit a virtual environment. By leveraging
HA, we can automate the response to a failure by auto-migrating VMs, thus reducing
downtime during node power failure or network failure. We explained the requirements
the infrastructure must meet in order to implement a fully functional HA feature. We
walked through the process of HA configuration and finally tested HA by simulating
device failure. We also learned how to install and use the Proxmox HA simulator to see HA
in action without setting up any clusters.

Due to the nature of Proxmox HA, it is highly recommended you test this feature to its full
extent before diving into implementing it for production clusters. HA can limit user
interaction during some operations. The need for HA should be evaluated and, if used, it
should be thoroughly tested before being implemented in a production environment. It is
also quite important to group and size the HA solution properly. If the nodes cannot handle
the load of virtual machines that HA requires, the entire solution could be at risk when a
failure occurs, compounding the issue.

In the next chapter, we are going to see the effectiveness of a good network monitoring
system and how to implement one to monitor a Proxmox environment.

11
Monitoring the Proxmox Cluster

Monitoring a network environment of any size is mandatory to ensure healthy operation
and timely responses to any issues. In this chapter, we will see how to monitor and
configure notifications, so that when something goes wrong in the cluster, we know about it
right away and can take necessary actions. We will cover the following topics in this
chapter:

An introduction to monitoring
Proxmox built-in monitoring
Zabbix as a monitoring solution
Configuring the disk health notification
Configuring SNMP in Proxmox
Monitoring the Proxmox cluster with Zabbix

An introduction to monitoring
In a network of any size, it is only a matter of time before an issue arises due to intentional
or unintentional circumstances. The root cause of an issue could be hardware failures,
software issues, human errors, or just about any other environmental factor that causes loss
of network or data. Network monitoring is a practice in which an administrator checks the
pulse of the network components in a network environment.

Monitoring the Proxmox Cluster Chapter 11

[310]

There is no system to monitor everything. A good monitoring system is usually put
together with various tools and some types of notification options to send alerts
automatically. The Proxmox cluster is a sum of switches, network cables, physical nodes
acting as hosts, and virtual machines. A monitoring system should be able to monitor all of
these components and automatically send notifications via a medium, such as an email or
SMS, to responsible parties. There are wide ranges of network monitoring tools available
today, such as Icinga, Zabbix, Nagios, OpenNMS, Pandora FMS, and Zenoss. There are
many more options, both paid and open source. In this chapter, we will see how to use
Zabbix to monitor the Proxmox cluster. Zabbix has a user-friendly GUI, graphing ability,
and many more features out of the box. It is very easy to learn, for novice and network
professionals alike. Once Zabbix is installed, all the configuration and monitoring can be
done through the GUI.

A monitoring node should be a standalone reliable machine. For learning and testing
purposes, it can be set up as a virtual machine. However, to monitor a production-level
cluster, a separate node outside the main cluster is an ideal solution. This will ensure that
even if the internal network is down, the monitoring system can still send out notifications.

Proxmox built-in monitoring
Proxmox has limited monitoring capabilities built into the GUI to monitor the health of a
cluster and gather real-time data on various resources. A visually appealing representation
of data makes it easily understandable while gathering particular data through just a few
clicks. Each separate entity comes with its own status page to monitor various aspects of the
cluster.

Datacenter Status
From this Status page, we can gather critical data at a glance, such as whether a node is
online or offline, total cluster storage, number of virtual machines, and so on. The following
screenshot shows the Status page of a production cluster. The Status page can be accessed
through the Datacenter | Summary menu:

Monitoring the Proxmox Cluster Chapter 11

[311]

As shown in the previous screenshot, from the Datacenter | Summary page we can see
the entire cluster status at a glance. The Health shows the current state of the Proxmox
cluster. It shows the name of the cluster, the quorum presence, and the total number of
online and offline Proxmox member nodes. When there is a cluster-related issue, we can
quickly check the cluster status here.

The Guests section shows the total number of KVM and LXC virtual machines Running
and Stopped in the cluster.

Monitoring the Proxmox Cluster Chapter 11

[312]

The Resources section shows the amount of cluster-wide available resources, such as CPU,
Memory, and Storage space. It also shows resources used as a percentage. The CPU and
Memory count is the total CPU cores and memory of all Proxmox nodes in the cluster. The
Storage is the total of all attached storage, including the local storage of all nodes and any
shared storage node attached to the cluster.

The Nodes section shows a list of all cluster nodes. We can sort this list by clicking on any
heading, such as Server Address, CPU usage, and so on. In the previous screenshot, the list
was sorted by Server Address in ascending order.

Node Status
The Status page shows node-specific data only. Proxmox comes with built-in RRD-based
graphs to show the historical resource usage and performance data up to 1 year previously.
Using this tool, we can analyze the performance trend of a resource over a period of time.
All consumption and performance data is under the Summary tab menu for both Proxmox
nodes and virtual machines. We can view data on a per hour, day, week, and year basis.
The following screenshot shows the Summary page of the node pmx-01 with the drop-
down list to select data for a period:

Monitoring the Proxmox Cluster Chapter 11

[313]

There are also ways to display a list of all the nodes and virtual machines in the cluster and
sort them by consumption to get quick information on the highest or lowest resource
consuming entity. We can see the list by navigating to Datacenter | Search. The following
screenshot shows the list of Proxmox nodes and virtual machines of a production cluster,
sorted by the highest memory consuming entity:

We can sort this list by Type, Description, Disk usage %, Memory usage
%, CPU usage, and Uptime by clicking on the column header. There is no
historical data in this list. It only shows the resource consumption in real
time.

We can leverage S.M.A.R.T. for disk drives to receive automated emails about the Proxmox
node when there are any major issues occurring in any disk drives in the node. For this, we
will need to install S.M.A.R.T. monitor tools, using the following command:

 # apt-get install smartmontools

Make sure that you install this in all the Proxmox nodes in the cluster.
There is no other configuration needed to receive the email, except
ensuring that the correct email address is entered for the root user in
Proxmox.

Monitoring the Proxmox Cluster Chapter 11

[314]

We can check the correctness of the email address from the user details dialog box in
the Datacenter | Users menu, as shown in the following screenshot:

Whenever there is a major issue in any disk drive in the Proxmox node, it will send out an
automated email with the name of the node where the issue originated and the nature of the
failures or issues for the disk drive. The email also shows the details of the drive itself, such
as the serial number and the device ID of the drive. The following screenshot shows a
sample of an email received from the node pm4-1 with the sector error for the device
/dev/sda, with the serial number V1FA516P:

Monitoring the Proxmox Cluster Chapter 11

[315]

If the same error continues to occur, the Proxmox node will send this email every 24 hours.
Based on the information provided in the email, we can pinpoint the drive and replace it if
necessary.

As we can see, Proxmox really does not have a robust monitoring system, and it's very
unlikely it ever will. Its strength lies in being a great hypervisor and not a monitoring
system. However, we can easily fill the gap using a third-party monitoring system, such as
Zabbix.

Zabbix as a monitoring solution
Zabbix was released in 2004 and is a robust web-based network monitoring tool capable of
monitoring many hundreds of hosts and running thousands of checks per host at any set
time. Zabbix is completely open source and does not have enterprise or paid versions.
Zabbix takes just a few minutes to install, even by a beginner, and it can be fully configured
through a web-based interface. The following screenshot shows the Zabbix 3.0 dashboard
after logging in through the web GUI:

Monitoring the Proxmox Cluster Chapter 11

[316]

Zabbix has a very active community and many downloadable templates used to monitor a
variety of devices or equipment. It is also comparatively easier to create our own custom
Zabbix template for nonstandard devices. More details on Zabbix can be found on the
official Zabbix site at http://www.zabbix.com/.

Why give preference to Zabbix over mainstream monitoring systems, such as Nagios or
Icinga, or any other solutions currently available? The reason is that Zabbix offers
simplicity, without sacrificing any of the features that make a great monitoring system.
Zabbix is fully managed through the GUI, without requiring you to edit any script file
through the CLI. This eases the burden of device configuration through the script file, such
as in the case of a Nagios-based monitoring system. Whether it is a small network
environment or a large one spread across regions, Zabbix is up to the challenge.

Installing Zabbix
In this section, we will see how to install Zabbix and configure it to monitor the Proxmox
cluster and network devices. We are going to install the Zabbix version 3.0 on CentOS 7.
Zabbix can be installed very easily on other major distributions, such as Debian or Ubuntu.

For stability and performance when monitoring a large production
environment, using CentOS as the base operating system is highly
recommended.

Always make sure that you set up a separate node or a virtual machine to
offer maximum performance. A fully configured Zabbix with thousands of
items will run frequent checks, which is resource heavy. Using Zabbix in a
node or VM, which serves other roles, will greatly affect the performance.

Zabbix also provides preinstalled and preconfigured downloadable appliances for
evaluation purposes. It is useful for learning and testing purposes but is not recommended
for production use. Zabbix appliances can be downloaded
from http://www.zabbix.com/download.php.

Zabbix will still work without a Zabbix agent installed on the host to be monitored, but an
agent can gather much more data from the host. There are agents available for all major
operating systems, including Linux, Windows, FreeBSD, AIX, Solaris, and HP-UX. For
devices where an agent installation is not possible, such as a managed switch or other
network equipment, Zabbix is able to monitor them through SNMP. After the Zabbix server
installation is completed, install Zabbix agents on hosts to be monitored.

http://www.zabbix.com/
http://www.zabbix.com/download.php

Monitoring the Proxmox Cluster Chapter 11

[317]

A Zabbix agent can capture much more data than SNMP. Use an agent over
SNMP whenever possible. This reduces the complexity of configuring SNMP while creating
a lot more custom checks. Agents are a great option for Proxmox host nodes.

The Zabbix official documentation has excellent instructions to install Zabbix on various
Linux distributions.

Refer to the documentation for instructions on how to install the Zabbix
3.0 server and agent at
https://www.zabbix.com/documentation/3.0/manual/installation/ins

tall_from_packages.

After the installation is complete, the Zabbix server can be accessed
through: http://<node_ip>/zabbix.

By default, the Username and Password to log in to the Zabbix web GUI are Admin and
zabbix, where the username is case sensitive. It is highly recommended that you change the
password right after logging in. Go to Administration | Users, then click on the Admin
(Zabbix administrator) member, or click on the User profile icon in top-right corner of the
GUI, to change the administrative password, as shown in the following screenshot:

https://www.zabbix.com/documentation/3.0/manual/installation/install_from_packages
https://www.zabbix.com/documentation/3.0/manual/installation/install_from_packages

Monitoring the Proxmox Cluster Chapter 11

[318]

If you are using CentOS 7 for the Zabbix server, after accessing the Zabbix GUI you may
notice that the status informs that the Zabbix server is not running, even though the Zabbix
service is running, as shown in the following screenshot:

This is due to the httpd_can_connect_network argument in the SELinux firewall
configuration. The argument needs to be enabled in order to let Zabbix access the network.
Run the following command to check whether it is off or disabled:

 # getsebool httpd_can_network_connect

If the result shows off, then enable it by running the following command:

 # setsebool httpd_can_network_connect on

The Zabbix GUI now shows that the server is running.

Configuring Zabbix
After the Zabbix server is installed and functioning, we have to set up emails so that we get
automated emails whenever there is an issue. Zabbix 3.0 is able to send emails through
SMTP. We can configure it by navigating to the Administration | Media types menu and
changing the SMTP information under Email. After the email is configured, it is now time
to add some hosts or devices to start monitoring.

Monitoring the Proxmox Cluster Chapter 11

[319]

Configuring a host to monitor
In this section, we will see how to add a host, whether it is a Proxmox node or a virtual
machine, to the Zabbix monitoring server. This procedure is the same for adding any host
with a Zabbix agent installed. By default, the Zabbix server is added to the monitoring host.
We are now going to add our example Proxmox node pmx-01 to Zabbix in order to be
monitored. The following steps show how to add the host to Zabbix:

Go to Configuration | Hosts and click on Create Host.1.
Type in the Host name and Visible name. The Host name must match the2.
hostname entered in the host Zabbix agent configuration file. We will configure
the agent after we add the host in the Zabbix server. The Visible name can be
anything.
Select an appropriate Group. Since we are adding a Proxmox host node, we need3.
to select Hypervisors as the Group.
If we are adding a host with the agent installed, we type in the IP address of the4.
host in the Agent interfaces. By default, the agent listens on port 10050. If we are
using a different port, we type in the port here. Make sure that you open the
ports in the firewall if the host is behind any firewall. The following screenshot
shows the Host configuration page after adding the necessary information:

Monitoring the Proxmox Cluster Chapter 11

[320]

Click on the Templates tab to add a template to the host. In Zabbix, templates are5.
preconfigured groups of checks. By assigning a template to a host, we apply
multiple checks at once instead of manually adding each check.
Type a template name in the Link new templates textbox, or select one by6.
clicking on the Select button. The textbox is a self-search box, so the value does
not need to be the exact name of the template. For example, we have typed in
Linux, which pulled up two possible templates. We are going to select Template
OS Linux, as shown in the following screenshot:

We can also assign an SNMP device using the same template page. Refer to the7.
Configuring SNMP in Proxmox section later in this chapter for how to install and
configure SNMP in Proxmox nodes.
Click on Add to assign the template to the host.8.

Monitoring the Proxmox Cluster Chapter 11

[321]

Click on Host inventory, and then select Automatic so that the Zabbix agent can9.
pull relevant information about the host, such as the host brand, serial number,
OS installed, and so on. We can also manually enter data, such as longitude,
latitude, hardware, and software installed in the node. This is helpful to build an
inventory list.
Click on Save to finish adding the host.10.

The following steps need to be performed to configure the Zabbix agent in a host:

Open the Zabbix agent configuration file in the1.
/etc/zabbix/zabbix_agentd.conf file of the host.
Make the changes for the following option lines:2.

 Server=172.16.2.172 //IP of Zabbix Server
 ServerActive=172.16.2.171:10051 //IP_Server:Server_Port
 Hostname=pmx-01
 //must be same as Hostname typed in Zabbix Server for the host

Save and exit the editor. Run the following command to restart the Zabbix agent3.
in the host:

 # service zabbix-agent restart

Within a minute or so of adding the host, the Zabbix server will run auto checks and will
discover that the host now has a live agent. The following screenshot shows the node after
adding it to the Zabbix monitoring:

Monitoring the Proxmox Cluster Chapter 11

[322]

From the list, we can also see that the template added 32 items, 15 triggers, and 5 graphs to
the host. Items are what are being checked by Zabbix and triggers are what initiate certain
actions, such as sending automatic notifications for any event. The template has two
discovery items, which automatically gather information of installed and configured disk
drives and partitions in the node. The following screenshot shows the Triggers page for the
host pmx-01:

The expression column in the Triggers page shows when an event is triggered. For
example, the expression {pmx-01:system.cpu.util[,iowait].avg(5m)}>20 for disk
I/O overload will trigger a warning when the I/O wait exceeds 20 for 5 minutes in the host.
Another example trigger is {pmx-01:proc.num[].avg(5m)}>300, which may trigger
when the number of running processes exceeds 300 for 5 minutes. Modern servers can run
many more processes at once. So, for a node or host that hosts many virtual machines, this
process limit of 300 may not be enough, and will trigger a warning frequently. We can
change the trigger, for example, to 900, to increase the limit.

To learn more about triggers, refer
to https://www.zabbix.com/documentation/3.0/manual/config/trigger
s/expression.

We can also add each virtual machine as a host and then monitor it through Zabbix. For
this, we need to install the Zabbix agent inside the virtual machine, and add it as a host in
Zabbix. To group all virtual machines together, we need to create a group named Virtual
Machine in Zabbix and assign all VMs to be monitored in that group.

https://www.zabbix.com/documentation/2.2/manual/config/triggers/expression
https://www.zabbix.com/documentation/2.2/manual/config/triggers/expression

Monitoring the Proxmox Cluster Chapter 11

[323]

Displaying data using a graph
Zabbix comes with an excellent graphing ability out of the box, without any manual
configuration. As soon as data is pulled from a resource, the graphing utility starts plotting
using the raw data. Almost all the built-in templates in Zabbix have some graphing items
predefined. We can get graphs of monitored items by navigating to Monitoring | Graphs in
the Zabbix GUI. The following screenshot shows the graph of the CPU load over a period of
15 minutes for a host:

We can also create our own graph items, through a few clicks, for any host or device being
monitored. For example, let's create a graph to visualize data for the CPU iowait overtime.
For this, we need to go to Configuration | Hosts, and then click on the node. Once inside
the node, click on the Graphs menu to open the graph editor page, as shown in the
following screenshot:

Monitoring the Proxmox Cluster Chapter 11

[324]

In the preceding screenshot, we can see that there are five graph items that have
already been created. We are going to add a new item to the pm4-2:CPU iowait time.
Click on the Create graph button to open a new graph item page. Type in an easily
understandable name for the graph item. We are going to name it CPU IOWait time. From
the Items box at the bottom of this, click on Add to open a list of available items to choose
from. We are going to select pm4-2:CPU iowait time for this example. We can configure
the color and type of the graph being created. Click on the Add button when you are
satisfied with the configuration. The following screenshot shows the graph creation page
for our example of pm4-2:CPU iowait time:

To see the newly created graph item, we need to go to Monitoring | Graphs and select the
item for the node. The following screenshot shows the graph for the gathered CPU IOWait
time over a period of 15 minutes:

Monitoring the Proxmox Cluster Chapter 11

[325]

In the preceding screenshot, we can see that the CPU IOwait time is shown in green, and
if there are any trigger events due to the CPU IOwait time being greater than 20%, they
will be shown in yellow.

Configuring the disk health notification
In the Proxmox built-in monitoring section, we saw how we can leverage S.M.A.R.T. to
receive automated emails if there are any issues for any disk drives. In this section, we are
going to accomplish the same thing, but with Zabbix, and with an additional feature:
graphing. A great use case of a graph for a disk drive is monitoring data for temperature.
High temperature is a bad thing for all spinning drives. Using the Zabbix graph, we can see
the exact temperature trend of the storage cluster, down to a single drive, and take action
accordingly. Zabbix can also send automated emails when there are any issues in any of the
drives, such as read or write issues, due to a bad sector or any other S.M.A.R.T. event.

Almost all HDDs and SSDs nowadays have the S.M.A.R.T. ability, which can gather
valuable data on the disk drive's health. Using the S.M.A.R.T. monitoring tool, we can avoid
premature drive failure by detecting potential problems early on. We can configure each
Proxmox node to send email alerts when any problem is detected in any attached drives.

If drives are connected to RAID controllers and configured as some form
of arrays, then the S.M.A.R.T. tool will not be able to retrieve the drive's
health data.

Monitoring the Proxmox Cluster Chapter 11

[326]

Installing smart monitor tools
We need to install smartmontools in our storage using the following command:

#apt-get install smartmontools

Retrieve a list of all the attached drives using the following command:

fdisk -l

Verify that each attached drive has the S.M.A.R.T. feature, and that it is turned on, using the
following command:

#smartctl -a /dev/sdX

If the drive has the S.M.A.R.T. feature and it is enabled, it will appear as shown in the
following screenshot:

If the feature is available but disabled for any reason, we can enable it using the following
command:

#smartctl -s on -a /dev/sdX

Configuring the Zabbix agent
Adding the disk drive monitoring into Zabbix is a two-step process. In the first step, we
need to add arguments in the Zabbix agent configuration file, and then add the drive items
in the Zabbix server for each host. These special arguments are known as user parameters.
They work similar to a script, where we can define commands to be run on the host, and
then the Zabbix agent passes the data to the Zabbix server.

In this example, we are going to add user parameters to pull data for the serial number and
drive temperature. The following two lines need to be added at the end of the agent
configuration file in /etc/zabbix/zabbix_agentd.conf:

Monitoring the Proxmox Cluster Chapter 11

[327]

After adding the lines, we need to restart the Zabbix agent using the following command:

service zabbix_agentd restart

Creating a Zabbix item in the GUI
After the user parameters are added, we need to create new items in the Zabbix server for
the host. First, we will add an item to gather data for the drive temperature. Go to
Configuration | Hosts | Items, and then click on Create item to open a new item page. The
following screenshot shows the page with the necessary configuration:

Monitoring the Proxmox Cluster Chapter 11

[328]

The name of the item can be any text string. Since we are pulling data through the user
parameters of the Zabbix agent, we need to select the agent as Type. The Key textbox is the
most important thing here, as this is where we define what data we are pulling. The key
entered, as shown in the preceding screenshot, tells Zabbix to pull the drive temperature for
the sda device. The numeric value of 194 in the key is for the temperature information.
Each smart monitor attribute has a unique numeric ID. For example, if we want to gather
data for an uncorrectable sector count, the code would be 197.

To view a complete list of smart monitor attribute codes, refer to
https://en.wikipedia.org/wiki/S.M.A.R.T.#Known_ATA_S.M.A.R.T._at

tributes.

Type of information is a drop-down list used to select the nature of data being collected.
Since the temperature is a numeric value, we will select the Numeric (unsigned) type. To
increase the temperature accuracy, we need to select Decimal as the Data type.

Update interval (in sec) is a textbox used to enter seconds, which needs careful attention.
This is the interval at which Zabbix will run checks for each item. By default, Zabbix uses an
interval of 30 seconds. When adding high-volume checks, such as a disk drive's data, with
more disk drives present in a node, the volume of checks will increase exponentially. For
example, if we want to gather drive data for a Ceph node with 12 drives, Zabbix will run
checks every 30 seconds for all the 12 drives, and that will add up to hundreds of checks
per hour. To reduce the check bottleneck, we can set it to a higher interval. In our example,
we are using 2 minutes, or 120 seconds, for a drive check. Click on Add to finish creating
the item.

We need to create separate new items for each drive that needs to be
monitored. Change the device ID for each item, such as sdb, sdc, and so
on.

Creating a trigger in the GUI
After the item is created, we now need to create a trigger so that Zabbix can send auto
notification emails if the temperature goes beyond a threshold. To create a trigger, go to
Configuration | Hosts | Triggers, and click on the Create trigger button. The following
screenshot shows the new trigger creation page with the necessary information entered:

https://en.wikipedia.org/wiki/S.M.A.R.T.#Known_ATA_S.M.A.R.T._attributes
https://en.wikipedia.org/wiki/S.M.A.R.T.#Known_ATA_S.M.A.R.T._attributes

Monitoring the Proxmox Cluster Chapter 11

[329]

Type in a Name to identify the trigger, and then enter an Expression for the trigger. The
Expression is used to set a threshold beyond which Zabbix will trigger an event, such as
sending an email. In our example, shown in the preceding screenshot, our Expression
shows that if the last temperature gathered is greater than 40 degrees Celsius, Zabbix will
send an alert email.

Monitoring the Proxmox Cluster Chapter 11

[330]

In order to identify the importance of the trigger, we need to select the Severity level. For
example, we have selected Warning as the severity of the trigger. Select the appropriate
severity depending on the trigger. This creates color coded information throughout Zabbix
to identify how serious the issue is. Click on Add to finish creating the trigger. Like triggers,
each drive will need a separate trigger item.

Creating graphs in the GUI
Following the instructions to display data using a graph, as discussed earlier in this chapter,
we are now going to create a new graph item to show the drive temperature data visually.
Unlike triggers and items, we do not need to create separate graph items. We can configure
one graph item to show multiple drive data by simply adding the drive items in the same
graph item. The following screenshot shows the drive temperature graph for a Ceph node
with seven disk drives over a 6 hour period:

Configuring SNMP in Proxmox
Simple Network Management Protocol (SNMP) is a network management protocol used
to monitor a wide variety of network devices. It is especially useful when a full network
monitoring agent installation is not possible, such as with switches, routers, printers, IP-
based devices, and so on. Almost all network monitoring programs support some level of
SNMP.

If the choice of monitoring a package does not have any agents, SNMP is the best option to
monitor those devices. SNMP is fully configurable in Linux distributions, and since
Proxmox is based on Debian, it inherits all the benefits of SNMP.

Monitoring the Proxmox Cluster Chapter 11

[331]

To learn more about SNMP, refer
to https://en.wikipedia.org/wiki/Simple_Network_Management_Proto
col.

There are a couple of components of SNMP worth mentioning here, since we will be using
them to configure SNMP. They are as follows:

Object Identifier (OID)
Management Information Base (MIB)

Object Identifiers
OIDs are objects that SNMP query to gather information from a device. An object can be a
network interface status, disk storage usage, device name, and so on. These object
identifiers are extremely structured in a hierarchical tree manner. Each OID is specifically
numbered. For example, the OID of the object that gathers the device name is
1.3.6.1.2.1.1.5.0. OIDs always have numerical values. OIDs can be compared with IP
addresses, where numeric values are used to identify a device in a network.

Each dot in an OID represents segmentation of the network element. We can think of an
OID like an address of a location. Let's take the following address:

Wasim Ahmed 111 Server Street, 4th Floor Calgary, AB 111-222 Canada

If we put this address in OID format, it will look like the following:

Canada.AB.Calgary.111-222.Server Street.111.4th Floor.Wasim Ahmed

Putting this in a formula will look like the following:

Country.Province.City.Postal code.Street name.Street number.Unit
number.Contact name

Just like the address example, the OIDs also follow a strict hierarchy, as shown here:

1 = ISO 1.3 = Organization 1.3.6 = US Department of Defense 1.3.6.1 = Internet 1.3.6.1.2 = IETF

Management 1.3.6.1.2.X = Management-related OIDs

https://en.wikipedia.org/wiki/Simple_Network_Management_Protocol
https://en.wikipedia.org/wiki/Simple_Network_Management_Protocol

Monitoring the Proxmox Cluster Chapter 11

[332]

To look up management-related OIDs, refer
to http://www.alvestrand.no/objectid/1.3.6.1.2.1.html.

Management Information Base
There are databases where objects are stored. MIB acts as a translator and allows an SNMP
server to query an object using a textual OID instead of numeric. For example, to retrieve a
device name through SNMP queries, we can use the OID 1.3.6.1.2.1.1.5.0 or the OID
SNMPv2-MIB::sysName.0. Both of them will give you the exact same result. But the textual
OID is easier to understand than just a numeric OID. We can compare MIB to OID as being
similar to a domain name to an IP address. Some manufacturers provide their own MIB
since they do not exist in the standard MIB. It is important to know the MIBs when
configuring unsupported devices for monitoring tools. There are a number of MIBs ready to
be downloaded. Proxmox does not install any MIB by default. It has to be manually
installed.

For more details on MIBs, refer
to https://en.wikipedia.org/wiki/Management_information_base.

There are three versions of SNMP currently available. Before implementing an SNMP
infrastructure, it is important to know which version to use. The three versions are as
follows:

SNMP version 1: This is the oldest SNMP version, which only supports 32-bit
counters and has no security at all. A community string is sent as plain text in this
SNMP.
SNMP version 2: This has all the features of version 1, with added features to
support 64-bit counters. Most of the devices nowadays support version 2.
SNMP version 3: This has all the features of version 1 and 2, with the added
benefits of security. Both encryption and authentication are added to counters. If
security is the biggest concern, this is the SNMP version that should be used.

http://www.alvestrand.no/objectid/1.3.6.1.2.1.html
https://en.wikipedia.org/wiki/Management_information_base

Monitoring the Proxmox Cluster Chapter 11

[333]

SNMP is not installed by default in Proxmox. The following steps show how to install
SNMP in Proxmox and how to configure it.

Run the following command to install SNMP on Proxmox nodes:

apt-get install snmpd snmp

Add the following repository in the /etc/apt/sources.list of the Proxmox node. This
is used to add a repository to install SNMP MIBs:

deb http://http.us.debian.org/debian/stretch main non-free

Run the following commands to install SNMP MIBs:

apt-get update
apt-get install snmp-mibs-downloader

Open the SNMP /etc/snmp/snmpd.conf configuration file using an editor.

Ensure that the following line is uncommented. We can specify the node IP address. SNMP
listens on port 161. Change it here if required:

agentAddress udp:127.0.0.1:161

Add the following line to the SNMP configuration file:

rocommunity <secret_string> <IP/CIDR>

In our example, we have added the following line:

rocommunity SecretSNMP 172.16.0.0/24

Save the file and restart SNMP using the following command:

#service snmpd restart

Monitoring the Proxmox Cluster Chapter 11

[334]

Adding an SNMP device in Zabbix
Adding an SNMP device in Zabbix is a similar process to adding a host, except that we have
to select SNMP interfaces instead of Agent interfaces, as shown in the following
screenshot:

By default, SNMP devices listen on port 161. Zabbix comes with prebuilt SNMP templates,
which can gather a vast amount of data for devices where agent installation is not possible
or desired. A common example of an SNMP device is a network switch. Zabbix has
excellent support for switch monitoring through the SNMP template.

In this example, we will add a Netgear 48 port switch using the SNMP interface. Go to
Configuration | Hosts and click on the Create host button to open a new host creation
page. Besides using the SNMP interface in the host creation page, we need to select the
SNMP device template and type in the SNMP v2 community string under MACRO, as
shown in the following screenshot:

Monitoring the Proxmox Cluster Chapter 11

[335]

The {$SNMP_COMMUNITY} macro is used to pass a community secret string, which is used
by the SNMP version 2. The value of this MACRO must match the VALUE entered in the
monitored device itself.

After the host or device is added, Zabbix will start checks on the switch in a few minutes
and start gathering data. The SNMP device template has auto discovery configured, which
will automatically scan the switch for the number of ports and show data for both incoming
and outgoing traffic on each port. The template also has a graph item configured to show
you the visual data of each port. The following screenshot shows the graph of incoming and
outgoing traffic usage for port 1 of the Netgear 48 port switch over a 1-hour period:

Like the switch, we can add just about any network device with the SNMP capability for
Zabbix to monitor at all times.

Monitoring the Ceph cluster with the
Proxmox GUI
As of Proxmox VE 5.0, we can monitor and manage the Ceph storage cluster through the
Proxmox GUI. Under the Ceph tabbed menu of each node, you will see a great amount of
data, such as the health status of the Ceph cluster, the number of OSDs, mons, pools, Ceph
configurations, and so on. Refer to Chapter 5, Installing and Configuring Ceph, for
information on Ceph management through the Proxmox GUI.

Monitoring the Proxmox Cluster Chapter 11

[336]

The Ceph | Status page of the Proxmox GUI shows all relevant information about the Ceph
cluster. Data such as Health, Monitors, OSDs status, and so on, are presented in real time.
This is critical to maintaining a healthy Ceph cluster. Whenever an issue arises within Ceph,
we can quickly pinpoint where the issue is through this Status page. The following
screenshot shows the Ceph status of our example cluster:

In the previous screenshot, we can clearly see that the Ceph cluster has errors due to some
OSDs being out and down. Ceph placement groups (PGs) have some defined states that
show the current condition of the PGs: conditions such as stale+active, stale+down,
active+clean, and so on, to name a few. Understanding these various states is very
important to manage a fully functional Ceph cluster.

Monitoring the Proxmox Cluster Chapter 11

[337]

To learn more about the PG states visit the official Ceph documentation
at http:/ ​/​docs. ​ceph. ​com/ ​docs/​master/ ​rados/ ​operations/ ​pg- ​states/ ​.

Monitoring a Ceph cluster with third-party
options
In this section, we will see how to implement a third-party solution to monitor the Ceph
cluster. There are several options that can be used to monitor a Ceph cluster graphically,
which are as follows:

Calamari: https://ceph.com/category/calamari/
Kraken dash: https://github.com/krakendash/krakendash
The Ceph dashboard: https://github.com/Crapworks/ceph-dash

All three options are viable options used to monitor the Ceph cluster, but due to the
simplicity and effectiveness of Ceph dashboard, we are going to see how to install the Ceph
dashboard in this chapter. This is the only free monitoring dashboard, and it is read-only,
without any management ability. This is also safer, since an unauthorized user cannot make
Ceph changes. The Ceph Calamari and Kraken dashboards are both equally challenging to
install and configure.

The Ceph dashboard can be installed on any Ceph node or Proxmox+Ceph node in the
cluster. As long as it can read the ceph.conf file, it will function just fine. The Ceph
dashboard does not require a web server or any other services to function. We can
download the Ceph dashboard package from Git. By default, Git is not installed in the
Proxmox node. We can install it using the following command:

apt-get install git

Next, we need to clone the Ceph dashboard GitHub repository, using the following
command:

git clone https://github.com/Crapworks/ceph-dash

After the download is complete, we need to add the IP address of the node where the
dashboard will be located. We need to make changes in the following line in the ceph-
dash.py file:

app.run(host='ip_address',debug=True)

http://docs.ceph.com/docs/master/rados/operations/pg-states/
http://docs.ceph.com/docs/master/rados/operations/pg-states/
http://docs.ceph.com/docs/master/rados/operations/pg-states/
http://docs.ceph.com/docs/master/rados/operations/pg-states/
http://docs.ceph.com/docs/master/rados/operations/pg-states/
http://docs.ceph.com/docs/master/rados/operations/pg-states/
http://docs.ceph.com/docs/master/rados/operations/pg-states/
http://docs.ceph.com/docs/master/rados/operations/pg-states/
http://docs.ceph.com/docs/master/rados/operations/pg-states/
http://docs.ceph.com/docs/master/rados/operations/pg-states/
http://docs.ceph.com/docs/master/rados/operations/pg-states/
http://docs.ceph.com/docs/master/rados/operations/pg-states/
http://docs.ceph.com/docs/master/rados/operations/pg-states/
http://docs.ceph.com/docs/master/rados/operations/pg-states/
http://docs.ceph.com/docs/master/rados/operations/pg-states/
http://docs.ceph.com/docs/master/rados/operations/pg-states/
http://docs.ceph.com/docs/master/rados/operations/pg-states/
http://docs.ceph.com/docs/master/rados/operations/pg-states/
http://docs.ceph.com/docs/master/rados/operations/pg-states/
http://docs.ceph.com/docs/master/rados/operations/pg-states/
http://docs.ceph.com/docs/master/rados/operations/pg-states/
http://docs.ceph.com/docs/master/rados/operations/pg-states/
https://ceph.com/category/calamari/
https://github.com/krakendash/krakendash
https://github.com/Crapworks/ceph-dash

Monitoring the Proxmox Cluster Chapter 11

[338]

To start the dashboard after making the changes, simply run the following command:

<dashboard_directory>/ceph-dash.py

We can access the dashboard by pointing to the node, such as at the following link:

http://ip_address:5000

The following screenshot shows the status of our example cluster using the Ceph
dashboard:

Monitoring the Proxmox Cluster Chapter 11

[339]

The Ceph dashboard displays the following information on a Ceph cluster:

The Ceph cluster key
The overall health status
The monitor status
The OSD status
The PG status
The storage utilization percentage
The total available space and used space
Read/write speed per second
Operations per second

Refer to Chapter 5, Installing and Configuring Ceph, for information on Ceph components,
such as mon, OSD, PG, and so on. All the data is automatically updated at regular intervals.
When faults within the cluster occur, the dashboard will show related information in a color
coded format. Using port forwarding in the firewall, we can also monitor a Ceph cluster
remotely.

Summary
In this chapter, we saw how we can monitor a Proxmox cluster network using powerful
monitoring systems, such as Zabbix. The only monitoring option available as a mainstream
choice, but it does have many advantages over other solutions. The out-of-the-box features,
such as graphing, templates, SNMP, auto notification, and so on, are just the tip of the
iceberg of what Zabbix has to offer. Whether it is a small environment or a large cloud
service provider spanning multiple regions, Zabbix can monitor them all. A good network
administrator will try a few solutions and find the one that suits their environment best.

In the next chapter, we will see some complex production-level virtual network
environments leveraging Proxmox as a hypervisor. We will take a look at a scenario-based
network diagram to gain knowledge of what Proxmox can do.

12
Proxmox Production-Level

Setup
So far in this book, we have seen the internal workings of Proxmox. We now know how to
properly set up a fully functional Proxmox cluster. We discussed Ceph—a robust and
redundant shared storage system—and how we can connect it with Proxmox. We also saw
what a virtual network is and how it works with the Proxmox cluster.

In this chapter, we are going to see which components play a crucial part in making a
Proxmox cluster production-ready, with multilayer redundancy, good performance, and
stability. We are going to cover the following topics:

Definition of production level
Key components of a production-level setup
Entry-level and advanced-level hardware requirements

Throughout this chapter, you will notice that we have used user-built hardware
configurations instead of ready-made branded servers. The purpose of this is to show you
what sort of node configuration is possible using off-the-shelf commodity hardware to cut
costs while setting up a stable Proxmox cluster. The example configurations shown in this
chapter are not theoretical scenarios, but are taken from various live clusters in service. Use
the information in this chapter purely as a guideline so that you can select the proper
hardware for your environment at any budget.

Proxmox Production-Level Setup Chapter 12

[341]

Defining the production level
Production level is a scenario where a company's cluster environment is fully functional
and actively serving its users or clients on a regular basis. It is no longer considered as a
platform to learn Proxmox or a test platform to test different things on. A production-level
setup requires much advanced planning and preparation, because once the setup is
complete and the cluster has been brought online, it cannot be taken offline completely at a
moment's notice when users are dependent on it. A properly planned production-level
setup can save hours, or days, of headache. If you are still learning Proxmox, you might
want to set aside hardware to practice on so that you can hone your skillset before
attempting a production-level setup. In this section, we are going to cover some of the key
components or characteristics of a production-level environment.

Key components
The following key components should be kept in mind while planning for a production-
level cluster setup, due to stability and performance requirements:

Stable and scalable hardware
Redundancy
Current load versus future growth
Budget
Simplicity
Hardware inventory tracking

Stable and scalable hardware
Stable hardware means minimum downtime. Without quality hardware, it is not unusual to
have randomized hardware failure in a cluster environment, causing massive, unnecessary
downtime. It is very important to select a hardware brand with a good reputation and
support behind it. For example, Intel's server class components are well known for their
superb stability and support. It is true that you pay more for Intel products, but sometimes
the stability outweighs the higher cost per hardware. AMD is also an excellent choice, but
statistically, AMD-based hardware has more stability issues.

Proxmox Production-Level Setup Chapter 12

[342]

For budget-conscious enterprise environments, we can mix both Intel- and AMD-based
hardware in the same cluster. Since Proxmox provides a full migration option, we can have
Intel nodes serving full time, while AMD nodes act only as failover. This reduces cost
without compromising stability. Throughout this chapter, we are going to stay primarily
with Intel-based hardware. At the end of this chapter, we will see some proven AMD-based
clusters to give you some idea of how viable AMD is in a Proxmox cluster environment.

When choosing between Intel and AMD, apart from stability, the following two criteria are
also deciding factors:

Energy cost
Heat generation

Intel CPUs use less energy and run much cooler than their AMD counterparts. Increased
heat generation in AMD servers means an increased requirement for cooling, and thus,
increased utility bills. By design, AMD CPUs use a much higher wattage per CPU, which is
the direct cause of high heat generation.

Another deciding factor for hardware is scalability and availability. Hardware components
used in server nodes must be easily available when they need to be replaced. Using
difficult-to-find components, even if they cost much less, only prolongs downtime when
something needs to be replaced. A common practice is to use identical hardware for groups
of servers based on their workload. This makes hardware management easier and also
allows in-hand stock buildup to quickly replace a node when needed. This is extremely
difficult in an environment where a cluster has been put together using all sorts of different
brands, models, and configurations.

Redundancy
The need to have redundancy in different layers in a production environment cannot be
stressed enough. There must be redundancy in different levels of components.

Node level
Node-level redundancy usually includes redundant power supply, network cards, RAID,
and so on. This redundancy is confined to the node itself. With redundant power supply,
the node can be connected to two different power sources, thus ensuring continuous
operation during power failure.

Proxmox Production-Level Setup Chapter 12

[343]

Always use mirrored SSD drives as the operating system drive. This will
ensure that the operating system itself will run uninterrupted, even if a
drive fails entirely.

Utility level
In order for the cluster nodes to keep running during power loss, we need to provide some
sort of backup power, whether by means of a UPS, a generator, or a large battery bank.

Network level
Network-level redundancy includes network infrastructure, such as switches and cables. By
using multiple switches and multiple network paths, we can ensure that network
connectivity will not be interrupted during a switch or cable failure. Layer three managed
switches, such as stackable switches, are the correct components to create truly redundant
network paths.

HVAC level
Proper cooling equipment, with backup systems for continued cooling in the event the
HVAC system goes down, is often overlooked. Depending on the number of server nodes,
switches, and so on, each network environment creates enormous amounts of heat. If there
is no redundancy in place, a failure of the cooling system can result in the failure of
extreme-heat-generating components. Whether it is air or liquid cooled, there must be a
contingency in the cooling system to prevent any damage. Damage of components also
means loss of connectivity and increased cost.

Storage level
Storage plays an important role for any virtual environment and deserves the same level of
redundancy attention as the rest of the cluster. There is no point in implementing
redundancy in all Proxmox host nodes, networks, and power supplies, then putting virtual
disk images on a single NAS storage without any redundancy. If the single node storage
fails, even though it is considered shared storage, all VMs stored on it will be completely
unusable. In a production environment, use of enterprise-grade storage systems such as
Ceph and Gluster is critical. This type of storage has redundancy built into the
firmware/operating system. We still need to ensure that these storage nodes have node,
utility, network, and HVAC-level redundancy in place.

Proxmox Production-Level Setup Chapter 12

[344]

Current load versus future growth
When designing a cluster, you should always think of future growth, at least the growth for
the foreseeable future. An enterprise cluster must be able to grow with the company and
adapt to increased workloads and computational requirements. At the very least, plan in
such a way that you do not exceed your resources within a few months of your
deployment. Both the Proxmox and Ceph clusters have the ability to grow at any time and
to any size. This provides the ability to simply add new hardware nodes to expand cluster
size and increase the resources required by the virtual machines.

When provisioning your node memory configuration, take failover load into account. You
will likely need to have 50 percent capacity available for a single node failure. If two nodes
of a three-node cluster were to fail, you would want each machine to utilize only 33 percent
of the available memory. For example, let's say all six nodes in a Proxmox cluster have 64
GB memory, and 60 GB is consumed at all times by all the virtual machines. If node 1 fails,
you will not be able to migrate all virtual machines from node 1 to the other five nodes,
because there is not enough memory to go around. We could just add another spare node
and migrate all the virtual machines. However, we have to make sure that there are enough
power outlets to even plug in the new node.

Budget
Budgetary concerns always play a role in decision making, no matter what kind of network
environment we are dealing with. The truth is that a setup can be adaptable to just about
any budget with some clever and creative planning. Administrators often need to work
with very small IT budgets. Hopefully, this chapter will help you to find that missing
thread to connect a budget with proper hardware components. By using commodity
equipment over complete brand servers, we can easily set up a full Proxmox cluster on a
very lean budget. Proxmox works very well on quality commodity hardware components.

Simplicity
Simplicity is often overlooked in a network environment. A lot of times, it just happens
naturally. If we are not mindful about simplicity, we can very quickly make a network
unnecessarily complex. By mixing hardware RAID with software RAID, putting RAID
within another RAID, or through multi-drive setup to protect OS, we can cause a cluster's
performance to drop to an almost unusable or unstable state. Both Proxmox and Ceph can
run on high-grade commodity hardware, as well as common server hardware. For example,
just by selecting desktop-class i7 over server-class Xeon, we can slash costs in half while
providing a very stable and simple cluster setup, unless the task specifically calls for a
multi-Xeon setup.

Proxmox Production-Level Setup Chapter 12

[345]

Tracking hardware inventory
An administrator should have access to key information about hardware being used in a
network: information such as the brand, model, and serial number of a hardware
component; when was it purchased; who the vendor was; when is it due for replacement;
and so on. A proper tracking system can save a lot of time when any of this information
needs to be retrieved. Each company is different, and thus, tracking systems could be
different, but the responsibility of gathering this information falls solely on the network
manager or administrator. If there is no system in place, then creating a simple spreadsheet
can be enough to keep track of all hardware information.

Hardware selection
Several factors affect what type of hardware to select, such as whether the cluster is going to
support many virtual machines with fewer resources or serve few virtual machines with
more resources. A cluster focused on many virtual machines needs to have a much higher
processor core count, so our goal should be to put as many cores as possible per node.
When a cluster is focused on few virtual machines, with a lot more users per virtual
machine, we need to have a large memory. Thus, a system with a smaller core but a greater
amount of memory is much more appropriate. Also, a cluster can focus on both types and
create a hybrid cluster environment. A hybrid environment usually starts with an entry-
level hardware setup and then matures into an advanced-level setup as the company grows
and a larger budget is available. For example, a small company can start its cluster
infrastructure with stable desktop-class hardware, and then gradually replace that with a
server-class platform such as Xeon to accommodate company expansion.

Sizing CPU and memory
A question often asked when it comes to creating virtual environments is how much CPU
or memory will be needed in each node and how much to allocate per virtual machine. This
is one of those questions that is very open-ended, because its answer varies greatly from
environment to environment. However, there are a few pointers that need to be kept in
mind to avoid over-allocation or under-allocation.

It is a fact that we will, and often do, run out of memory much sooner than CPU for a given
Proxmox or any other host node. From the usage of each VM on the Proxmox nodes, we can
determine the RAM and CPU requirements on that node. In this section, we are going to go
over the factors that will help us to decide on CPU and memory needs.

Proxmox Production-Level Setup Chapter 12

[346]

Single socket versus multi-socket
A multi-socket node will always have better performance than a single socket, regardless
of the number of cores per CPU. They work efficiently in distributing VM workload. This is
true for both Intel and AMD architectures. If the budget is available, a quad-socket node
will provide the maximum performance of any socket configuration node.

Hyper-threading – enable versus disable
One of the major differences between Intel and AMD is hyper-threading. All cores in AMD
CPUs are true cores, whereas all Intel CPUs have hyper-threading, which creates two
virtual cores per physical core. Another question that is asked far too often is whether to
enable or disable hyper-threading. From hundreds of reports and testing, it appears that it
is better to leave it on for newer Intel servers. The fear of performance degradation due to
hyper-threading is no longer valid, as it has gone through decades of development and all
the initial issues have been resolved. It is also best to not count all hyper-threading cores as
real cores, since they are still virtual. When counting the number of total cores available in a
node, take a conservative approach and count slightly fewer than the total cores.

Start small with VM resources
A virtual machine is completely different from a physical machine and it needs to be treated
as such. They do not consume CPU and memory like a physical node does. The best
practice is to always provision CPU and memory resources sparingly, and then increase
them as you see the application's performance. This allows the VM to use allocated
resources efficiently, which in turn makes all the VMs run efficiently in the node. By over-
provisioning CPU and memory for all VMs in the node, we degrade node performance,
because all VMs will be fighting to have more CPU time. Always start with one virtual CPU
(vCPU) for most of the VMs. Start from two vCPUs for processor intensive VMs such as
database servers, exchange servers, and so on. Monitor the VM's resource utilization and
adjust accordingly. A quick way to see which VM is using the most CPU or memory is
through the Datacenter or Node Search menu, which shows the list of all entities and is
sortable.

When allocating vCPU for a single VM, never exceed the total number of cores in the node.
This will degrade the performance of the entire node and all VMs in it.

Proxmox Production-Level Setup Chapter 12

[347]

Keep in mind that in a virtual environment, more CPU and memory for a
virtual machine does not always mean better performance.

Balancing node resources
Always ensure that each Proxmox node in a cluster has similar CPU and memory resources.
If some nodes end up with more than the others, it will cause an issue when trying to move
or migrate VMs from a high-resource node to a low-resource node. The node with less
resources will not be able to handle all VMs, causing longer downtime during node failure.
This issue can be mitigated by using a combination of a few high resource nodes and more
low resource nodes.

Ceph cluster production
As mentioned throughout this book, Ceph is a very resilient distributed storage system that
pairs well with Proxmox to store virtual disk images. There are a few key factors that make
a Ceph cluster a good choice for a production-level virtual environment.

Forget about hardware RAID
When it comes to Ceph nodes and clusters, we can forget about hardware-based RAID.
Instead, we have to think multi-node or clustered RAID. That is because of the distributed
nature of Ceph and how data is dispersed in all the drives in the cluster regardless of which
node the drive is in. With Ceph, we no longer need to worry about a device failure in a
particular node. Ceph performs best when it is given access to each drive directly without
any RAID in the middle. If we are to place drives in RAID per node, we will actually hurt
Ceph immensely and take away everything that makes Ceph great. We can, however, still
use the RAID interface card to implement JBOD configuration or to be able to connect many
drives per node.

Proxmox Production-Level Setup Chapter 12

[348]

Solid State Drive for Ceph Journal
Incoming data for the Ceph cluster gets written to a journal before it gets passed down to
the OSDs themselves. So, a dedicated drive such as SSD will increase write speed greatly,
since it can achieve an extreme write speed, much faster than a standard SATA or SAS
drive. Even the fastest 15,000 rpm enterprise-grade disk drive does not come close to the
performance of SSD. When selecting SSD for a Ceph journal, care must be taken in brand or
model selection.

Not all SSDs will perform well for a Ceph journal. Currently, the only SSD that can
withstand the rigorous load of Ceph while providing great write speed and power loss
protection is the Intel DC S3700 or S3500. There are other SSDs that can also perform well,
but the ones mentioned have a much longer lifespan. Their built-in power loss protection
also prevents journal data corruption, which may lead to corrupt data in OSDs. Visit the
following link for an article on how to test suitable SSD drives for Ceph and a list of
possible SSDs for the Ceph cluster:
http://www.sebastien-han.fr/blog/2014/10/10/ceph-how-to-test-if-your-ssd-is-sui

table-as-a-journal-device/.

Instead of standard SATA SSDs, we can also use PCI-based SSDs, which can provide an
extreme performance increase over that of standard SATA SSDs. If there is a drive bay
limitation for dedicated SSDs, then this is a perfect choice. The following link specifies Intel
PCI-E SSDs that can be considered as Ceph journal:
http://www.intel.com/content/www/us/en/solid-state-drives/solid-state-drives-75

0-series.html.

Ceph can still be used without the use of dedicated SSD journal drives. We can configure
Ceph OSDs to store journals on the same spinning drive, but due to the low speed of
mechanical drives, we will see high IO wait times in the Proxmox nodes. Use of enterprise-
grade SATA or SAS drives will lessen this IO wait time, but not as much as a dedicated
SSD.

Never put a dedicated journal, whether SSD or HDD, on any sort of RAID.
This will reduce journal performance, which in turn affects Ceph's overall
performance.

http://www.sebastien-han.fr/blog/2014/10/10/ceph-how-to-test-if-your-ssd-is-suitable-as-a-journal-device/
http://www.sebastien-han.fr/blog/2014/10/10/ceph-how-to-test-if-your-ssd-is-suitable-as-a-journal-device/
http://www.intel.com/content/www/us/en/solid-state-drives/solid-state-drives-750-series.html
http://www.intel.com/content/www/us/en/solid-state-drives/solid-state-drives-750-series.html

Proxmox Production-Level Setup Chapter 12

[349]

Network bandwidth
Having ample network bandwidth is crucial for Ceph or any other storage. The more
bandwidth that is dedicated, the more VM's performance and latency will benefit. Note
here that when a dedicated journal such as SSD is used, the requirement for network
bandwidth will increase significantly, because more data will traverse the Ceph cluster for
replication and distribution. For a Ceph cluster where SSD is used as a dedicated journal, a
gigabit network should not be used for the Ceph cluster network. At the very least, 10 GB
would be a good network. We can also use InfiniBand as an alternative network solution on
a lower budget. If neither is possible, then multiple bonded gigabits would also work. On a
single gigabit, the network will become a bottleneck, causing cluster-wide performance
degradation.

Also, Ceph cluster sync should be on its own dedicated network, with the Ceph public
facing network on another. Ceph uses the cluster network to commit all syncs between
OSDs. This prevents unnecessary load on the public facing network.

Liquid cooling
In this solution, computer equipment is cooled using liquid, as liquid is 1,000 times better at
heat transfer than air. We can effectively remove heat directly from IT equipment and
transfer it with great ease out of the facility. Liquid cooling takes away the hassle of running
a large HVAC system, thus saving enormous costs and reducing noise significantly. Liquid
cooling requires no internal fans, thus we can increase server density per rack tenfold.
Liquid cooling is the future, as more and more IT facilities are realizing its full potential. By
using liquid cooling, we can also decrease our energy consumption, reducing our carbon
footprint enormously. There are different liquid cooling solutions available on the market.

Proxmox Production-Level Setup Chapter 12

[350]

Total immersion in oil
IT equipment is totally submerged in mineral oil. Hot oil is pumped through a liquid-to-
liquid heat exchanger, where the heat is carried away, using water, to an outside cooling
tower. Water and oil never have full contact, only heat transfer. This is not only the most
cost-effective liquid cooling solution today, but also the messiest, as servers are dipped in
oil. It also requires more space, since all racks are laid on their backs. However, this extra
space can easily be compensated for by increased density per node. Currently, Green
Revolution Cooling pioneers this technology. Visit the following links for their official site
and a great video showing the technology in action:

Official website: http://www.grcooling.com/
YouTube video: https:/ ​/ ​www. ​youtube. ​com/ ​watch? ​v=​U5zoIEjo1Zk

There is another technology worth mentioning here that is similar to immersion, but the
immersion is isolated in the server node itself. LiquidCool Solutions has a unique approach
of filling up a sealed server chassis with mineral oil to remove heat.

Visit the following link for more info on this approach:

http://www.liquidcoolsolutions.com

Total immersion in 3M Novec
Similar to oil immersion cooling, this is also a total immersion technology, where 3M Novec
engineered fluid is used instead of mineral oil. The advantage of this option is zero mess.
Unlike oil, this fluid does not stick to any equipment and does not require any heat
exchanger or pump to move the fluid itself. This fluid has a boiling temperature of 60
degrees Celsius, at which it becomes vapor. When the vapor hits a cold coil on top of the
container, it turns to liquid and drops back down to the tank. Only a pump is needed to
circulate water through the coil, thus it needs only half of the equipment needed for oil-
based cooling.

Visit the following link for a video presentation of the technology:

https://www.youtube.com/watch?v=a6ErbZtpL88

http://www.grcooling.com/
https://www.youtube.com/watch?v=U5zoIEjo1Zk
https://www.youtube.com/watch?v=U5zoIEjo1Zk
https://www.youtube.com/watch?v=U5zoIEjo1Zk
https://www.youtube.com/watch?v=U5zoIEjo1Zk
https://www.youtube.com/watch?v=U5zoIEjo1Zk
https://www.youtube.com/watch?v=U5zoIEjo1Zk
https://www.youtube.com/watch?v=U5zoIEjo1Zk
https://www.youtube.com/watch?v=U5zoIEjo1Zk
https://www.youtube.com/watch?v=U5zoIEjo1Zk
https://www.youtube.com/watch?v=U5zoIEjo1Zk
https://www.youtube.com/watch?v=U5zoIEjo1Zk
https://www.youtube.com/watch?v=U5zoIEjo1Zk
https://www.youtube.com/watch?v=U5zoIEjo1Zk
https://www.youtube.com/watch?v=U5zoIEjo1Zk
https://www.youtube.com/watch?v=U5zoIEjo1Zk
http://www.liquidcoolsolutions.com
https://www.youtube.com/watch?v=a6ErbZtpL88

Proxmox Production-Level Setup Chapter 12

[351]

Direct contact liquid cooling
Heat is removed directly from the heat source, such as the CPU and memory, using a cold
plate and liquid coolant such as water or any other coolant agent. Since no equipment is
immersed, this technology can be used with existing infrastructure with major modification,
while still increasing density per node and reducing energy consumption. This is not a
unique technology, as this type of liquid cooling solution had been in use for several years.
Consumer class liquid cooling solutions use this off-the-shelf technology. Asetek is known
for desktop liquid cooling solutions for desktop users.

Visit their official site through the following link:

http://www.asetek.com/

Another direct contact liquid cooling solution provider worth mentioning here is from
CoolIT Systems. They also take the cold plate approach to cool equipment through liquid
cooling. Some of their solutions can be implemented directly in the rack as a standard
mounted cooling unit, without the need to have a water facility or cooling tower.

Visit the following link for more information on their solution:

http://www.coolitsystems.com/

Real-world Proxmox scenarios
Equipped with all the knowledge we have gathered from the previous chapters in this
book, we are now ready to put all the pieces together to form a complex virtual
environment for just about any scenario that we are going to be called for. A set of scenarios
to build networks using Proxmox for various industries is given in the next section. At the
end of the chapter, you will find network diagrams of each scenario given in the first part of
the chapter.

Some scenarios have been taken from real-life production environments, while some are
theoretical, to show how complex networks are possible with Proxmox. You can take these
network models and use them as they are or modify them to make them even better.

We hope that through these network scenarios and models, you will start seeing Proxmox
from a whole new point of view and be fully prepared to face any level of virtual
infrastructure you are challenged with.

http://www.asetek.com/
http://www.coolitsystems.com/

Proxmox Production-Level Setup Chapter 12

[352]

While analyzing these scenarios, keep in mind that the solutions and
diagrams provided in this chapter are some of the many ways the network
infrastructure could be set up. To fit the diagrams within the confinement
of the book, some non-vital components might have been omitted. All
network and identification information used in the network diagrams is
fictional.

The network diagrams show the relationship between components within infrastructure,
such as virtual environment, cluster of nodes, and overall network connectivity. They also
represent how virtual network components such as bridges relate to each other, network
segmentation, and so on.

Scenario 1 – an academic institution
This scenario is for a typical academic institution with multiple networks, multiple
campuses, and multiple building setups, along with both private and public networks.

Key requirements are as follows:

Network isolation to protect sensitive data.
Ability to have centralized management for network infrastructure.
Professors should be on separate Wi-Fi, accessible only by them. This Wi-Fi
should give professors the ability to log in to the main campus server to retrieve
their files for lectures.
Students should have on-campus Wi-Fi access and wired internet connection to
their dormitories. These subnets must be separated from the main campus
network.
The library should be on a separate subnet with its own server.
Classrooms, admin offices, and professors should be on the main isolated
network. Professors should have the ability to retrieve their files from file servers
in classroom computers during lectures.

Proxmox Production-Level Setup Chapter 12

[353]

This is a scenario for a typical academic institution campus network. Thanks to Proxmox,
we can have all the main server equipment and the virtual environment in one place to
have centralized management. There are five subnets in this network:

Subnet Network description

10.170.10.0 Wired network for dormitory. Firewall provides DHCP. This subnet does
not need to go through the main network.

10.180.10.0 Student and public Wi-Fi on campus. Firewall provides DHCP. This
subnet does not need to go through the main network.

10.160.10.0 Main administrative and professor network. Private Wi-Fi for professors is
an extension of this network, to allow professors to retrieve their files
wirelessly. All classrooms are also on this network to provide in-class
access to files for professors.

10.110.10.0 Storage cluster.

10.190.10.0 Library subnet. DHCP provided by virtualized library server. This server
is for the library only. Separate LAN (eth2) is used to connect the virtual
machine with the library building.

Proxmox Production-Level Setup Chapter 12

[354]

The following diagram shows typical network flow of academic institution:

Proxmox Production-Level Setup Chapter 12

[355]

Scenario 2 – multi-tier storage cluster with a
Proxmox cluster
Key requirements are as follows:

Need separate storage clusters for SSD, Hybrid HDD, and HDD
Storage clusters should be on separate subnets
Storage should be distributed with high availability and high scalability

For this scenario, each Proxmox node must have at least four network interface cards: three
to connect to three storage cluster subnets and one to connect the virtual environment. This
example is for six virtual machines to have access to three differently performing storages.
The following are the three Ceph clusters and their performance categories:

Subnet Network description

192.168.10.0:6789 CEPH cluster #1 with SSDs for all OSDs. This subnet is connected
with Proxmox nodes through eth1. This storage is used by VM6.

192.168.20.0:6790 CEPH cluster #2 with hybrid HDDs for all OSDs. This subnet is
connected with Proxmox nodes through eth2. This storage is used
by VM5.

192.168.30.0:6791 CEPH cluster #3 with HDDs for all OSDs. This subnet is connected
with Proxmox nodes through eth3. This storage is used by VM1,
VM2, VM3, and VM4.

10.160.10.0 This is the main subnet for all virtual machines.

Multi-tiered infrastructure is very typical for data centers where there is a different level of
SLA-based clients with various requirements for storage performance:

Proxmox Production-Level Setup Chapter 12

[356]

Proxmox Production-Level Setup Chapter 12

[357]

Scenario 3 - Virtual infrastructure for a multi-
tenant cloud service provider
Key requirements are as follows:

There should be a firewall cluster for edge firewalls
Each client network must be fully isolated from others
A separate storage cluster for backup is required
Client users must be able to access their company's virtual desktops via RDP
There must be a bandwidth control ability for client networks' internet
connectivity
Replicate all data to another data center

In this scenario, a virtualized firewall and virtual bridges are used to separate traffic
between each client network. The virtual firewall has seven virtual network interfaces to
connect six client networks within a virtual environment and to provide WAN connectivity.
Internet bandwidth is controlled through the virtual firewall for each vNIC. The virtual
firewall is connected to WAN through the main virtual bridge, vmbr0. The Proxmox cluster
has nine virtual bridges:

Subnet Network description

vmbr0 Main virtual bridge to provide WAN connection to virtual firewall

vmbr1 Connects main storage cluster

vmbr5 Connects storage cluster for backup

vmbr10 Bridge for company ABC subnet 10.10.10.0

vmbr20 Bridge for company XYZ subnet 10.20.20.0

vmbr30 Bridge for LXC containers for web hosting instances

vmbr40 Bridge for object storage instances to be used by software developers

vmbr50 Bridge for company 123 subnet 10.50.50.0

vmbr60 Bridge for a small business's virtual cluster

Each bridge connects the client company's virtual machines together and creates isolated
internal networks for respective clients:

Proxmox Production-Level Setup Chapter 12

[358]

Proxmox Production-Level Setup Chapter 12

[359]

Scenario 4 – nested virtual environment for a
software development company
Key requirements are as follows:

Developers must have nested virtual environments to test software
Outsourced developers should have access to nested virtual environments using
RDP
Developers must have the ability to create or delete virtual clusters
Nested virtual environments must be fully isolated from main company network

In this scenario, a nested Proxmox virtual cluster is created inside the main cluster for a
software development company, mainly for software testing purposes. Since virtual clusters
can be created and taken down at any time, it reduces cost and time setting up the entire
hardware and setup process. A virtual firewall is used to direct traffic between nested and
main virtual environments. All developers access their nested virtual machines through
RDP port forwarding. Outsourced developers also need to connect to nested virtual
environments using RDP. The main firewall does port forwarding to the virtual firewall.
Then, the virtual firewall does port forwarding to nested virtual machines. Four subnets are
used in this example:

Subnet Network description

10.160.10.0 This is the main company subnet. All staff, including developers, are on
this subnet.

10.160.20.0 Main storage cluster subnet. It is connected to the main cluster with
vmbr1.

10.170.10.0 Nested cluster subnet. It is isolated from the main cluster with vmbr2,
which is only connected to the virtual firewall.

10.170.20.0 Nested storage cluster subnet.

Virtual machines VM Proxmox 1, VM Proxmox 2, and VM Proxmox 3 are used to create a
nested Proxmox cluster, while VM Storage 1, VM Storage 2, and VM Storage 3 virtual
machines are used to create a nested storage cluster:

Proxmox Production-Level Setup Chapter 12

[360]

Proxmox Production-Level Setup Chapter 12

[361]

Scenario 5 – virtual infrastructure for a public
library
Key requirements are as follows:

Catalog consoles should be on a separate subnet along with the main admin
subnet
Public Wi-Fi and consoles for public internet usage should be on the same
separate subnet
Need kiosks for self check-in/check-out of books and media
Need online access to the library catalog
Public internet traffic must be monitored for any Internet Usage Policy violation
Public computers should have printer access

This is a typical scenario for a public library network system. Since a public library is a
public place with access to computers for public usage, it is very important to isolate
sensitive networks. In this example, the network is isolated using two subnets:

Subnet Network description

10.16.10.0 Main network for library staff and protected consoles only, such as catalog,
kiosks, staff printers, and self check-in/check-out.

10.20.10.0 This public subnet is for public Wi-Fi, internet consoles, and printers, with a
payment system.

The network 10.20.10.0 is controlled, managed, and isolated using a virtual firewall, VM5.
The virtual firewall has two vNICs, one for WAN connection through vmbr3 and the other
to connect to a dedicated NIC on Proxmox node through vmbr4. The eth2 of Proxmox node
is connected to a separate LAN switch to connect only public devices. The virtual firewall
provides the ability to monitor internet traffic to keep in line with any violations of Library
Internet Usage Policy.

Each Proxmox node has four network interface cards, eth0, eth1, eth2, and eth3, and the
cluster has three virtual bridges, vmbr0, vmbr2, and vmbr4. The main storage cluster is
connected to the Proxmox node through eth1 and the backup cluster is connected to eth3:

Proxmox Production-Level Setup Chapter 12

[362]

Proxmox Production-Level Setup Chapter 12

[363]

Scenario 6 – multi-floor office virtual
infrastructure with virtual desktops
Key requirements are as follows:

All staff members should be on virtual desktops
Redundant internet connectivity
Each department should have their own remote desktop server
Accounting department network traffic should only be directed to their
department

This is a common scenario for an office building where departments are on different floors
of the building. Since the accounting department requires data isolation, we are going to use
a VLAN to isolate their data. Administrative offices, the copy room, and the main server
room are on the 4th floor. The HR department is on the 5th floor, Marketing is on the 6th,
and the accounting department is on the 7th floor. The 5th, 6th, and 7th floors have their
own LAN switches. So, we could easily use VLAN for another floor if it was required. We
only need to set up VLAN on the switch for the 4th floor.

Each Proxmox node has two network interfaces. The eth1 is to connect the storage cluster
and eth0 is to connect all virtual machines to their departments. The vlan0.10 is used to
separate Accounting traffic, which is only directed to the 7th floor.

All department staff use virtual desktops through RDP. Each department's virtual server
acts as a remote desktop server and the department's main server:

Proxmox Production-Level Setup Chapter 12

[364]

Proxmox Production-Level Setup Chapter 12

[365]

Scenario 7 – virtual infrastructure for the hotel
industry
Key requirements are as follows:

Centralized IT infrastructure management.
Dedicated secured Wi-Fi access for guests.
Secured private Wi-Fi access in the restaurant and bar for menu tablets only. The
Wi-Fi needs to talk to the restaurant and bar server.
All staff must have remote desktops for day-to-day work.
A video surveillance system should be integrated with the virtual environment.

This is a scenario for a typical hotel establishment with an in-house restaurant. This
example uses a central virtualized database server to store all information. Although it is an
unconventional way to connect all departments with a single database (including a
surveillance system), it is possible to use an all-in-one single solution to reduce cost and
management overhead. In a typical scenario, separate software is used to handle different
departments without data portability. In this example, unified management software
connects all departments with a single database and a customized user interface for each
department.

Secured non-filtered Wi-Fi connectivity is provided for all guests. DHCP is provided
directly by the firewall. Secured private Wi-Fi is set up for restaurant menu tablets only. All
menu tablets only connect to the restaurant/bar virtual server, with an IP of 10.190.1.5.
All department thin clients and IP-based surveillance cameras are connected to the main
network subnet 10.190.1.0:

Proxmox Production-Level Setup Chapter 12

[366]

Proxmox Production-Level Setup Chapter 12

[367]

Scenario 8 – virtual infrastructure for geological
survey organization
Key requirements are as follows:

Field surveyors should submit their work orders from their mobile devices
through a VPN connection
There must be a fail-over infrastructure in the multi-site network topology

In this scenario, a geographical survey company has a main office and branch office
connected by 1+ GBps hard-link network connectivity. Each office has an identical
infrastructure set up. All surveyors use mobile devices, such as tablets, for their survey
work. The survey software automatically detects which office IP is live and sends data to
the infrastructure of that office. All data is replicated at the block level in real time between
the two offices.

If the infrastructure of one office becomes unavailable, staff can simply continue to work
using the infrastructure from the other office:

Proxmox Production-Level Setup Chapter 12

[368]

Proxmox Production-Level Setup Chapter 12

[369]

Summary
Virtual environments are very flexible, so there is no one-network-fits-all configuration.
Each network will be unique. The components and requirements described in this chapter
are mere guidelines to show how to take the correct approach to plan for a production-level
Proxmox setup. We saw some of the requirements of a production-level setup, and we
covered how to allocate CPU and memory resources properly for both the Proxmox host
node and the virtual machine itself. We also discussed how to give Ceph storage the best
chance of providing redundancy along with performance. Finally, we saw how to cool
equipment efficiently by leveraging liquid cooling, thus increasing Proxmox computing
node density per rack while saving energy.

We also saw some real-world scenarios of Proxmox in action in different industries. We
hope this will aid you in your quest to find that perfect balance between performance and
budget that all network administrators crave.

In the next chapter, we are going to see how to effectively use the built-in backup and
restore features of Proxmox to be part of a disaster planning strategy. We are also going to
learn about the newest feature, replication, introduced in the latest Proxmox 5.0 release, and
how this can aid your backup strategy.

13
Back Up and Restore Virtual

Machines
A good backup strategy is the last line of defense against disasters such as hardware failure,
environmental damage, accidental deletions, or misconfigurations. In a virtual
environment, a backup strategy can turn into a daunting task because of the number of
virtual machines that need to be backed up. In a busy production environment, a new
virtual machine can come and go anytime. Without a proper backup plan, the entire backup
task can become difficult to manage. Gone are the days when we had only a little server
hardware to deal with and backing it up was an easy task. In today's virtual environments,
a backup solution has to deal with several dozen, or possibly several hundred, virtual
machines.

Depending on the business requirement, an administrator may have to back up all the
virtual machines regularly, instead of just the files inside VMs. Backing up an entire virtual
machine takes up a very large amount of space after a while, depending on how many
previous backups we have. A granular file backup helps you quickly back up user data but
provides no protection against entire VM corruption or loss.

Along with a backup strategy, a restore plan is equally important, because a backup is only
useful when we can successfully restore data in a timely and proper manner after a disaster.
In this chapter, we will cover the following topics:

Exploring Proxmox backup options
Configuring backups
Configuring snapshots
Restoring VMs
VM replication
Backing up a configuration file

Back Up and Restore Virtual Machines Chapter 13

[371]

Proxmox backup options
As of Proxmox VE 5.0, there are two backup options included out of the box:

Full backup: This backs up the entire virtual machine
Snapshots: This freezes the state of a VM at a point in time

Proxmox 5.0 can only do a full backup and cannot do any granular file backup from inside a
virtual machine. Proxmox also does not use any backup agents for guest VMs.

A full backup
A full backup is a complete, compressed backup of a virtual machine, including its
configuration file. We can take this backup and restore it locally to the same cluster or to an
entirely different Proxmox cluster. We can potentially set up a full backup every day, or on
a different schedule of up to one week. Since a full backup commits the complete backup of
the entire virtual machine, including all the virtual disk images in it, it is the slowest backup
option. It is also the safest, since the final backup file is not dependent on the original VM.
Two of the most important components of a full backup are backup modes and
compression level.

Full backup modes
Various backup modes offer different data assurance and speed. There are three types of
modes available for a full backup.

Snapshot
Snapshots for a full backup are not the same as snapshots for virtual machines, where they
freeze the state of the VM in a point in time. A snapshot for a full backup is when it is
committed without powering off or temporarily suspending the VM. This is also known as
a live backup. Since a backup occurs while the VM is running, there is no downtime for this
mode, but it also has the longest backup time. On rare occasions, files in use can cause
backup errors due to file locks.

Back Up and Restore Virtual Machines Chapter 13

[372]

Suspend
In this mode, a backup occurs after temporarily suspending or freezing the VM. There is no
need to completely power off the VM; thus, the downtime is moderate during a backup.
After a backup is completed, the VM resumes regular operation. This mode has a much
lower chance of errors during a backup since a VM is suspended.

Stop
In this mode, running VMs are automatically powered off or stopped and then powered on
after the backup has been completed. This provides the maximum assurance of zero errors
in the backup, since the VM is not running at all. This is also the fastest backup mode.

Backup compression
In Proxmox, we can commit a backup with different compression levels. The higher the
level, the less space is used to store backup files, but it also consumes higher CPU resources
to perform compression. There are three compression levels in a Proxmox backup.

None
When this level is selected, no compression occurs for the backup task. While this will take
the least amount of CPUs during a backup task, do keep in mind that it will take
a significantly large amount of space to store backup files. Proxmox virtual disk images are
sparsed, which means that an allocated disk image only uses some of the actual data space.
The rest of the allocation is sparsed, or filled with zeros.

A backup with no compression will save the disk image without compressing the empty
spaces. This will cause the backup file to take as much room as the disk image itself.

Use this option with care and ensure that the backup storage has enough
storage space to hold uncompressed backup files.

LZO
This is the default compression level in Proxmox. LZO provides a balance between speed
and compression. It also has the fastest decompression rate, making the restoration of a VM
much faster.

Back Up and Restore Virtual Machines Chapter 13

[373]

GZIP
This level provides a much higher compression ratio but also takes a longer time to back up.
Due to an increased compression rate, this level consumes a lot more CPU and memory
resources. We need to ensure that backup nodes have sufficient processing ability before we
enable this level.

Snapshots
Snapshots freeze or capture the state of a virtual machine at a point in time. This is not a full
backup of a VM, since the snapshots are fully dependent on the original VM. We cannot
move snapshots elsewhere for safekeeping. Snapshots are used to roll back to a previous
state. Since snapshots do not back up the entire virtual machine with disk images, they are
the fastest backup option to quickly save the state of the VM. In Proxmox, we can take
snapshots of a running VM; in which case, the content of the running memory also gets
saved. This way, we can revert to the earlier VM exactly as it was running when a snapshot
was taken.

A good use case of this backup is when testing software or applying updates. We can take
snapshots of a VM prior to installing any software or applying updates. So, if something
goes wrong after the installation, we can simply revert to the previous state in a matter of
minutes instead of reinstalling the entire virtual machine. This is much faster and cleaner
than uninstalling the tested software itself.

A full backup should never be substituted with snapshots. Always include a full backup in
a primary disaster recovery strategy.

As of Proxmox VE 5.0, there is no snapshot scheduling option. All snapshots must be
performed manually. For this reason, snapshots are not widely used as a means of main
backup planning. Two of the most used scenarios for snapshots are to save the state of a
VM before applying updates/patches or installing software for testing, and to save very
mission critical VM states in between full backups. In an environment with several dozen
virtual machines, manual snapshots can become a time-consuming task. It is possible to set
up snapshot scheduling using bash, cron, and qm, but these methods can be flawed and
they are known to be somewhat unstable; therefore, they are not recommended for a
production environment.

If a full backup is performed on a virtual machine that has snapshots applied, the snapshots
do not get placed in the backup file. A full backup task ignores all the snapshot images.
Also, when a virtual machine is deleted, all the snapshots belonging to the virtual machine
also get deleted.

Back Up and Restore Virtual Machines Chapter 13

[374]

Configuring backup storage
A sound backup strategy has a dedicated shared storage for the backup images instead of
local storage or storage that is used for the disk images themselves. This way, we can
centralize the backup location and restore them even in the event of a Proxmox node failure.
If the backup is stored locally on the same node, during hardware failures, that node may
become completely inaccessible, causing a VM restoration delay.

One of the most popular options for a backup storage node is NFS. In an enterprise or
mission-critical environment, a cluster with built-in redundancy dedicated to backups is a
recommended practice. In smaller environments, good redundancy can still be achieved
using storage options, such as Gluster or DRBD. With the addition of ZFS and Gluster in
Proxmox VE, it is now a viable option to turn a Proxmox node into a backup using ZFS and
still manage the node through the Proxmox GUI. Unfortunately, we cannot store backup
files on the Ceph RBD storage.

For a single backup storage node, FreeNAS is a great option without cluster redundancy.
Regardless of which storage system is used, the primary goal is to store a backup on a
separate node instead of the computing node. Refer to Chapter 4, Storage Systems, for
information on how to attach various storage systems to Proxmox. Once a storage is set up
and attached to Proxmox, we need to ensure that the content type for the storage is
configured in order to store backup files and backup rotation quantity. There are two
options in the storage dialog box to select the content type and to define the backup rotation
quantity. The following screenshot shows the storage dialog box for an NFS storage in our
example cluster:

Back Up and Restore Virtual Machines Chapter 13

[375]

In the preceding screenshot, we selected the VZDump backup file from the drop-down list
and typed 3 in the Max Backups, or backup rotation, quantity tab. This means that the
storage will allow you to store backup files and three recent backups will always be kept.
Older backups will automatically be deleted. This will only happen automatically when the
backup is handled by a backup schedule.

When performing manual backups, this quantity value will actually prevent committing
manual backups if there are already three backups stored in the storage for a VM. In such
cases, we will have to manually delete older backups or increase the quantity value to
accommodate new manual backups. We can delete backup files for the VM through the
Backup tab menu of the VM or directly from the storage device in the content tab. We need
to select the backup file that we need to delete and then click on Remove. The following
screenshot shows the backup menu for a VM:

Make sure that you set appropriate values for Max Backups, because
higher values will keep more backup files, consuming a lot more space in
the storage node. Too many backup files and not enough space will cause
new backup tasks to fail. We can also set up two storage nodes and use
one to store frequent backups, for example, weekly, while the other one
can be used to store longer interval backups, for example, biannually.

Depending on the backup strategy and business requirement, there may be a need to keep
certain periods of backup history. Proxmox allows both automatic and manual deletion of
any backups outside the required history range. Automatic deletion is performed through
the value of Max Backups in the backup dialog box. We can enter any number between 0 to
365 as Max backups. For example, our NFS storage has a Max Backups of 3. This means
that during a full backup, Proxmox will keep the three newest backups of each virtual
machine and delete anything older.

Back Up and Restore Virtual Machines Chapter 13

[376]

If we were to commit daily backups, we could potentially keep 365 days', or 1 year's, worth
of backups at any given time. If we did a backup every other day, then it would be 2 years'
worth of backups.

Show VM configuration from backup
Show Configuration is a new feature added from Proxmox 5.0. Previously, we could not
see the configuration of a VM that was backed up without restoring it completely. This is
useful when the VM does not exist any more and only a backup is available. The option is
under the Backup menu, named Show Configuration, as shown in the following
screenshot:

To view the configuration, select a backup file, then click on Show Configuration. This will
open a dialog box with the full configuration of the VM this backup file belongs to. The
following screenshot shows the configuration of the VM #101:

Back Up and Restore Virtual Machines Chapter 13

[377]

Configuring full backup
All full backups are in the .tar format, containing both the configuration file and virtual
disk image file. The backup files are all you need to restore a virtual machine on any nodes
and on any storage. Full backup files are named based on the following formats for both
KVM and LXC virtual machines:

vzdump-lxc-<ct_id>-YYYY_MM_DD-HH_MM_SS.tar
vzdump-lxc-<ct_id>-YYYY_MM_DD-HH_MM_SS.tar.lzo
vzdump-lxc-<ct_id>-YYYY_MM_DD-HH_MM_SS.tar.gz

vzdump-qemu-<vm_id>-YYYY_MM_DD-HH_MM_SS.vma
vzdump-qemu-<vm_id>-YYYY_MM_DD-HH_MM_SS.vma.lzo
vzdump-qemu-<vm_id>-YYYY_MM_DD-HH_MM_SS.vma.fz

The following screenshot shows a list of backup files in a backup storage node, as seen from
the Proxmox GUI:

The backup list is sortable by the Format, Type, or Size of backup files. From the same
page, we can also delete or restore backup files.

Back Up and Restore Virtual Machines Chapter 13

[378]

Creating a schedule for backup
In Proxmox, we can schedule automated backup tasks or commit manual backups for each
virtual machine. Whether scheduled or manual, the backup process is the same for both
KVM and LXC virtual machines. Schedules can be created from the Backup option under
the Datacenter tabbed menu. We will see each option box in detail in the following
sections. The Backup option shows a list of already created backup schedules, along with
options to Add, Remove, and Edit tasks. The schedule dialog box is the same for adding,
removing, and editing backup tasks. We can click on Add to open the dialog box, as shown
in the following screenshot:

Back Up and Restore Virtual Machines Chapter 13

[379]

In the preceding screenshot, we created a backup task to perform twice a week for selected
virtual machines. The dialog box has several components, which need to be defined in
order to schedule a backup task.

Node
This is a drop-down list used to select a Proxmox node to show only the virtual machines in
that node. This also sets the task to apply to that node only. For example, if we select a
particular node and a VM in it to commit a backup, and we later move that VM to another
node, no backup task will be performed since the VM is no longer in the original node. By
default, all nodes are selected. In our example, we have selected all nodes.

Storage
This is a drop-down list used to select a backup storage destination where all full backups
will be stored. Typically, an NFS server is used for backup storage. They are easy to set up
and do not require a lot of upfront investment due to their lower performance
requirements. Backup servers are much leaner than computing nodes since they do not
have to run any virtual machines. Some storage nodes, such as ZFS, do need a lot of
memory to operate adequately.

Day of week
This is a drop-down list used to select which day or days the backup task applies to. We can
select multiple days in this list. In order to create a daily backup task, all days need to be
selected. As of Proxmox VE 5.0, we can only create daily or weekly backup schedules.

Start Time
Unlike Day of week, only one time slot can be selected. Multiple selections of times, to
backup different times of the day, are not possible.

If the backup needs to run multiple times a day, create a separate task for
each time slot.

Back Up and Restore Virtual Machines Chapter 13

[380]

Selection mode
This is a drop-down list used to define how VMs are selected for backups. There are three
options available to select from:

The All mode will select all the virtual machines within the whole Proxmox
cluster or node, depending on the selection in the Node drop-down list
The Exclude selected VMs mode will back up all VMs except the ones selected
The Include selected VMs mode will back up only the ones selected

Send email to
Enter a valid email address here so that the Proxmox backup task can send an email upon
backup task completion, or if there was an issue during backup. The email includes the
entire log of the backup tasks.

It is highly recommended that you enter an email address here so that an
administrator or backup operator can receive backup task feedback emails.
This will allow you to find out if there was an issue during backup or how
much time it actually took, to see if any performance issues occurred
during backup.

Email notification
This is a drop-down list used to define when the backup task should send automated
emails. We can select this option to always send an email or to only send an email when
there is an error or a failure.

Compression
This is a drop-down list used to select the compression level for the backup task. Refer to
the Backup compression section earlier in this chapter to see the differences between the
various compression levels. By default, the LZO (fast) compression method is selected.

Mode
This is a drop-down list used to define the backup mode for the task. Refer to the Full backup
modes section earlier in this chapter to see the differences between backup modes. By
default, all running virtual machine backups occur with the snapshot option.

Back Up and Restore Virtual Machines Chapter 13

[381]

Enable
This is a checkbox used to enable or disable a backup task. This was newly added in the
recent Proxmox version. With this option, we can disable a backup task temporarily instead
of deleting and creating from scratch, as was the case in previous Proxmox versions. The
following screenshot shows the Backup option with our newly created backup task listed:

Creating a manual backup
A manual backup can be performed on a particular virtual machine at any time through the
Proxmox GUI. The manual backup option is accessible through the Backup tabbed menu of
the virtual machine. From the same Backup menu, we can back up, restore, and delete
backup files.

To open the backup creation dialog box, we select the VM we are going to back up, then
click on the Backup now button. The manual backup dialog box is extremely simple. We
only need to select the destination Storage node, the backup Mode, and the Compression
level, as shown in the following screenshot:

Back Up and Restore Virtual Machines Chapter 13

[382]

Creating snapshots
A snapshot are a great way to preserve the state of a virtual machine. It is much faster than
a full backup, since it does not copy all the data. A snapshot is not really a backup, in a way,
and does not perform granular level backup. It captures the state at a point in time and
allows rollback to that previous state. A snapshot can be really helpful when used in
between full backups. The Take Snapshot option can be found under the Snapshots tabbed
menu of the virtual machine. A newly installed VM without any snapshots will appear
under the Snapshots menu, as shown in the following screenshot:

The actual snapshot creation process is very straightforward. Click on Take Snapshot to
open the dialog box, and then just enter a Name, select or deselect the RAM content, and
type in some Description. The Name textbox does not allow any spaces and the name must
start with a letter of the alphabet. The following screenshot shows the snapshots creation
dialog box for our example VM #100:

Back Up and Restore Virtual Machines Chapter 13

[383]

Keep in mind that when creating snapshot of an LXC container, the option
to Include RAM is not present. When selecting this option for KVMs, the
bigger the RAM allocation is for the virtual machine, the longer it will take
to create a snapshot, but it is still much faster than a full backup.

The snapshot feature is available for both KVM and LXC virtual machines. The following
screenshot shows the Snapshots option with our newly created snapshot:

If we want to go back to the snapshot image, we just select the snapshot we want to go back
to and click on Rollback. Simply click Yes when prompted to confirm the rollback.

Keep in mind that when you roll back to the earlier virtual machine state,
it will erase all the changes that happened to the virtual machine between
the time of rolling back and the snapshot being rolled back to.

Restoring a virtual machine
Like backup, we can also restore virtual machines through the Proxmox GUI. VMs can be
restored through the Backup menu tab of the VM or by selecting a backup file through the
storage content list. If Restore is selected through the VM Backup option, then the VM ID
cannot be changed. To understand this better, let's take a look at the following example:

Back Up and Restore Virtual Machines Chapter 13

[384]

In the preceding screenshot, we are under the Backup option for VM #100. Since the
Backup option shows a list of all backup files stored in that backup storage node, we can
see the backup file for VM #100. If we select the backup file and then click on Restore, we
will not be able to restore the VM #100 on its own. Instead, it will actually replace VM
#100. The following screenshot shows the Restore dialog box where the destination VM ID
is not definable:

If we select the backup file for VM #100 from the storage content list and then click on
Restore, we will be able to define a VM ID in the Restore dialog box, as shown in the
following screenshot:

Back Up and Restore Virtual Machines Chapter 13

[385]

Defining the VM ID during restore is needed when we want to restore a VM while the
VM's same ID stays intact. If the same VM ID is kept, then the existing virtual machine in
the cluster with the same ID will be deleted and restored from the backup version. If we use
a different ID before restoring it, then we will have an exact copy of the original VM with a
different VM ID.

One important thing to remember is that a full backup created for a virtual
machine with the .qcow2 or .vmdk image format can only be restored to
local, CephFS, or NFS-like storages. But a virtual machine with the .raw
image format can be restored on just about any storage system. RBD and
LVM storages do not support image types such as .qcow2 or .vmdk.

Backup/restore through the CLI
In Proxmox, the entire backup and restore process can be managed from the command line
if the GUI becomes inaccessible.

Backup using the CLI
The command to commit a backup for both KVM and LXC virtual machines is the same.
The following is the command format for a backup:

vzdump <vmid> <options>

There is a long list of vzdump options that can be used with the command. The following
are just a few of the most commonly used ones:

Options Description

-all The default value is 0. This option will back up all available virtual machines
in a Proxmox node.

-bwlimit This adjusts the backup bandwidth in KBPS.

-compress The default value is LZO. This sets the compression type or disables
compression. The available options are 0, 1, gzip, and lzo.

-mailto This is the email address used to send a backup report.

-maxfiles This contains an integer number. This sets the maximum number of backup
files to be kept.

Back Up and Restore Virtual Machines Chapter 13

[386]

-mod The default value is stop. This sets the backup mode. The available options
are snapshot, stop, and suspend.

-remove The default value is 1. This removes older backups if the value entered is
more than in -maxfiles.

-lockwait This is the maximum time in minutes to wait for a global lock. The default
value is 180.

-storage This is the storage ID of the destination backup storage.

-tmpdir This specifies a temporary directory to store files during backup. This is
optional.

Restore using the CLI
Although the same command can be used to perform a backup for both KVM and LXC,
there are two separate commands available to restore the KVM and LXC virtual machines:

qm restore: To restore KVM-based VMs
pct restore: To restore LXC containers

The following command format will restore KVM VMs through the command line:

#qmrestore <backup_file> <new/old_vmid> <options>

Based on the previous command, if we want to restore our example KVM #100 from a
backup onto local storage, it will appear as follows:

#qmrestore /var/lib/vz/dump/vzdump-qemu-110-2017_08_13-20_24_26.vma.lzo 110
-storage local

Back Up and Restore Virtual Machines Chapter 13

[387]

The following options can be used with the qmrestore command:

Options Description

-force <int> The Boolean value is 0 or 1. This option allows for overwriting the
existing VM. Use this option with caution.

-unique <int> The Boolean value is 0 or 1. This assigns a unique, random
Ethernet address to the virtual network interface.

-pool <string> This is the name of the pool to add the VM to.

-storage <string> This is the storage ID of the destination storage where the VM disk
image will be restored.

The following command format will restore LXC containers through the command line:

#pct restore <ct_id> <backupfile> <options>

Based on the previous command, if we want to restore our example container #101 onto
local storage, it will appear as follows:

#pct restore 101 /var/lib/vz/dump/vzdump-
lxc-101-2017_08_25-18_49_04.tar.lzo -storage local

The following options can be used with the pct restore command:

Options Description

-force <int> The default value is 0 or 1. This option allows overwriting
the existing VM. Use this option with caution.

-cpulimit <int> The value range is from 0 to 128 with the default value as
0. This defines the number of CPUs or CPU time. Value 0
defines no CPU limit.

-cpuunits <int> The value range is from 0 to 500,000, with the default
value as 1,024. This defines the CPU weight of the VM in
relation to other VMs.

-console <int> The default value is 1. This defines the number of consoles
to be attached to the container.

-force <int> The Boolean value is 0 or 1. This allows overwriting of the
existing container with the restored one.

Back Up and Restore Virtual Machines Chapter 13

[388]

-hostname <string> This sets the hostname of the container after a restore.

-memory <int> The default value is 512. This defines the amount of
memory allocated for the container.

-swap <int> The default value is 512. This defines the amount of swap
space for the container.

-password <string> This sets the root password in the container after a restore.

-storage <string> This defines the destination storage ID where the container
will be restored.

Unlocking a VM after a backup error
Any backup process can be interrupted before it is finished due to various issues, such as
backup storage node failure, loss of network connectivity, very large virtual disk images,
and so on. Prior to starting the actual backup process, Proxmox puts a global lock on the
VM so that multiple backup tasks cannot be run on the same node. If the backup is not
finished successfully, this lock sometimes remains in place and is not automatically
removed. If we try to start/stop the VM, we may see an error message that informs us that
the VM is locked.

In such cases, we need to manually unlock the VM to resume the normal operation. The
unlocking cannot be done from the Proxmox GUI, but only through the CLI. The command
will need to be run in the node where the VM is. The following command will unlock a
locked VM in a Proxmox node:

 # qm unlock <vm_id>

Virtual machine replication
Virtual machine replication is a brand new feature that has been added from the Proxmox
VE 5.0 release. This is a very useful feature for a single-node Proxmox environment where
VM disk images reside locally on the same computer node the VMs actually run from. With
this option, VMs can be replicated to a different node in real time should the primary node
go down for any number of reasons. In such a scenario, the second node with a replica of
the VMs can be brought online, thus minimizing downtime significantly.

Back Up and Restore Virtual Machines Chapter 13

[389]

It is very important to note here that this replication will only work when
the VM disk image is stored on a local ZFS storage.

The storage must be attached to a Proxmox cluster using the ZFS storage plugin, as shown
in the following screenshot:

The replication simply will not work when the disk image is on any other storage. Even if
the disk image is stored on a ZFS storage with NFS share, replication will not work. In such
a scenario, when trying to create replication, the following error message will be displayed:

ZFS is needed because the replication uses ZFS snapshots to perform replication,
minimizing network traffic. A new command line tool, pvesr, has been added to perform
all replication tasks. When we manage replication through the GUI, it just leverages the
pvesr command.

Back Up and Restore Virtual Machines Chapter 13

[390]

It should be noted here that the replication feature is presented as a
technology preview in Proxmox 5.0, but from our extensive lab testing, it
has proven very stable. If you have a single-node Proxmox deployment
and want to use replication as a primary backup strategy, then doing tests
to familiarize yourself with the replication process is highly
recommended.

Creating a replication task through the GUI
The replication menu is accessible from Datacenter-, node-, and VM-specific menus. The
only difference is each replication menu shows the specific entity-related replication tasks.
For example, the Datacenter-specific replication menu shows all replication tasks within
the cluster, whereas the node-specific replication menu shows replication tasks for that
node only.

To access the replication dialog box through the Proxmox GUI, select a VM you want to
replicate; then, from the Replication option, click on Add, as shown in the following
screenshot:

Back Up and Restore Virtual Machines Chapter 13

[391]

Since we are creating a replicated version of the VM, we cannot define any manual ID for
the VM. The replicated VM is going to be an exact copy of the existing VM, including the
same ID and identical configuration.

Target
This is a drop-down list to select which Proxmox node the VM is going to be replicated to.
Note that the destination node must also have ZFS storage set up. If the source VM is on
ZFS but the destination node has no ZFS storage, we cannot create the replication task. We
will see an error message, as shown in the earlier section. It is possible to replicate a VM to
multiple nodes, thus increasing redundancy. We can achieve this by creating multiple tasks
for the VM, but we can never replicate a VM to the same storage or same node the VM is in.

Schedule
Here, we define how frequently the VM will be replicated. Initially, when a replication task
is started, the process will replicate the entire VM; after that, it will only replicate
incrementally on set intervals. The drop-down list has some predefined schedules, which
can be also customized, simply by typing the value. For example, if we want to replicate the
VM every 5 minutes, we can simply type */5 in the schedule textbox, since there is no
predefined schedule for 5 minutes. Note that frequent replication will increase bandwidth
consumption, depending on how much data is changing in the VM.

Rate limit (MB/s)
We can limit the amount of bandwidth that can be consumed during the replication
process. By default, it is set to unlimited bandwidth. When replicating multiple VMs on the
node, it may be very helpful to limit the rate so the running VMs can be used without any
issue. The rate limit is defined in MBps.

Enabled
To enable the replication task, this option needs to be checked. This is useful when disabling
the replication task temporarily. To enable it again, simply select the task and click on the
Edit button.

Back Up and Restore Virtual Machines Chapter 13

[392]

Creating a replication task through the CLI
In order to create a replication task through the CLI, it is very important to know that each
replication task created must have a cluster-wide unique ID. When the tasks are created
through the GUI, the ID gets created and assigned automatically. But when they are created
through the CLI, we have to manually assign the ID. This unique job ID is node-specific
only. For example, if the first node has a replication task using a job ID from 0 to 10,
another node can also have unique job ID of the same sequence. The format of this ID is:

<vmid>-<integer job number>

We are going to use the pvesr command to create a replication task. The following is the
command-line format to create a task:

pvesr create-local-job <vmid>-<job number> <destination_node> --schedule
"<frequency>" --rate <limit in MB/s>

Using the command-line format, if we want to create a replication task for VM #100 to
replicate to node pmx-02 every 5 minutes with a rate limit of 20 MBps, we will enter the
following command:

pvesr create-local-job 100-0 pmx-02 --schedule "*/5" --rate 20

If we want to create another task for VM #102 to node pmx-02 every 30 minutes without a
rate limit, we will enter the following command:

pvesr create-local-job 102-1 pmx-02 --schedule "*/30"

Note that we have entered a unique ID of 1 for this task, for VM #102.

Once the task is created, we can also edit it through the CLI. The following command
format is to update an already created replication task:

pvesr update <vmid>-<job number> --schedule "<frequency>"

To change the schedule of replication 100-0 to half an hour, we would enter the following
command:

pvesr update 100-0 --schedule "*/30"

Back Up and Restore Virtual Machines Chapter 13

[393]

To see a list of all replication tasks, use the following command format:

pvesr list

To disable or enable a replication task, use the following command format:

pvesr <disable/enable> <vmid>-<job number>

Replication process
The replication process will start automatically, at set intervals, without any user
interaction. If the replication task is created for a VM for the first time, it will initially send
an entire copy of the VM to the destination node. Once the initial transfer is done, then the
replication process will only send new data that has changed incrementally.

Also, after the initial transfer, we are now fully ready with VM redundancy. In the event the
node with the running VM goes down, we can simply turn on the replicated VM on the
second node while we fix the issue on the primary node. This can significantly decrease the
downtime for a small environment without shared storage. Depending on what replication
interval has been used, users will only lose data since the last sync. So if the scheduled task
is set to run every 5 minutes, then the replicated VM will only lose the last 5 minutes.

Replication depends on SSH, so it is important that nodes can connect to each other with
proper SSH keys. If there is a problem with SSH connectivity, you may see a replication
error like the following:

You may have to find the cause of the SSH issue, but in most cases it can be fixed using the
following command:

ssh-copy-id <proxmox_Node>

To run a replication task manually at any time, select the replication task, then click on
the Schedule now button on the Task page.

Back Up and Restore Virtual Machines Chapter 13

[394]

Backup configuration file
The backup configuration file in Proxmox allows more advanced options to be used. For
example, if we want to limit the backup speed so that the backup task does not consume all
of the available network bandwidth, we can limit it with the bwlimit option. As of
Proxmox VE 5.0, the configuration file cannot be edited from the GUI. It has to be done
from the CLI, using an editor. The backup configuration file can be found in
/etc/vzdump.conf. The following is the default vzdump.conf file on a new Proxmox
cluster:

tmpdir: DIR
dumpdir: DIR
storage: STORAGE_ID
mode: snapshot|suspend|stop
bwlimit: KBPS
ionice: PRI
lockwait: MINUTES
stopwait: MINUTES
size: MB
stdexcludes: BOOLEAN
mailto: ADDRESSLIST
maxfiles: N
script: FILENAME
exclude-path: PATHLIST
pigz: N:

All the options are commented in the file by default because Proxmox has a set of default
options already encoded in the operating system. Changing the vzdump.conf file
overwrites the default settings and allows us to customize the Proxmox backup.

The bwlimit option
The most common edit in vzdump.conf is to adjust the backup speed. This is usually done
in the case of remotely stored backups and interface saturation if the backup interface is the
same as that used for the VM production traffic. The value must be defined in kilobytes per
second (KBps). For example, to limit backup to 200 MBps, make the following adjustment:

bwlimit: 200000

Back Up and Restore Virtual Machines Chapter 13

[395]

The lockwait option
The Proxmox backup uses a global lock file to prevent multiple instances running
simultaneously. More instances put an extra load on the server. The default lock wait in
Proxmox is 180 minutes. Depending on different virtual environments and numbers of
virtual machines, the lock wait time may need to be increased. If the limit needs to be 10
hours or 600 minutes, adjust the option as follows:

lockwait: 600

The lock prevents the VM from migrating or shutting down while the backup task is
running.

The stopwait option
This is the maximum time in minutes the backup will wait until a VM is stopped. A use case
scenario is a VM that takes much longer to shut down, for example, an exchange server or a
database server. If a VM is not stopped within the allocated time, backup is skipped for that
VM.

The stdexcludes option
This is a Boolean option to enable or disable exclusion of standard files, such as temporary
files, log files, or hidden OS system files. By default, this option is enabled.

The mailto option
This is a comma-separated value to define email address to which the backup notifications
will be sent after a successful backup or failure.

The script option
It is possible to create backup scripts and hook them with a backup task. This script is
basically a set instruction that can be called upon during the entire backup tasks to
accomplish various backup-related tasks, such as starting/stopping a backup, shutting
down/suspending a VM, and so on. We can add customized scripts as follows:

script: /etc/pve/script/my-script.pl

Back Up and Restore Virtual Machines Chapter 13

[396]

The exclude-path option
To exclude certain folders from backing up, use the exclude-path option. All paths must
be entered on one line, without breaks. Keep in mind that this option is only for LXC
containers:

exclude-path: "/log/.+" "/var/cache/.+"

The previous example will exclude all the files and directories under /log and
/var/cache. To manually exclude other directories from being backed up, simply use the
following format:

exclude-path: "/<directory_tree>/.+"

The pigz option
In simple terms, pigz allows multiple threads on multiple cores during the .gzip
compression backup. The standard .gzip backup process uses a single core, which is why
the backup is slower. Using the pigz package, we can notify the backup process to use
multiple cores, thus speeding up the backup and restore process. pigz is basically a .gzip,
but with multi-core support. It is not installed in Proxmox by default. We can install it using
the following command:

apt-get install pigz

In order to enable pigz for backup, we need to select the .gzip compression level for the
backup task in GUI. Then, the following pigz option in the backup configuration file
enables the pigz feature:

pigz: 1

By default, this value is 0 and is used to disable pigz. A value of 1 uses half of the total core
in the node, while any value greater than 1 creates a number of threads based on the value.
The value should not exceed the maximum number of CPU cores in the node.

It is worth noting here that pigz is not faster than or superior to the LZO
compression level, but when using the maximum compression, such as
.gzip, the use of pigz will significantly reduce the backup time while
compressing backup at the maximum level.

Back Up and Restore Virtual Machines Chapter 13

[397]

Summary
In this chapter, we looked at the backup and restore features in Proxmox, how to configure
them, and how to use them to create a good data disaster recovery plan. We also looked at
the new VM replication feature to replicate a VM across nodes for safekeeping when using
local storage.

There are no substitutes for backing up data in order to mitigate any disasters where data
may be at risk. As much as backing up is important, the ability to restore is also equally
important, since backup files will not mean anything if a restore is not possible in times of
need. Although Proxmox does not provide everything you need for backing up, such as a
granular file backup, the ability to back up a virtual machine is very helpful. The backup
features in the Proxmox platform have proven to be reliable in production environments
and during actual disaster scenarios.

In the next chapter, we are going to take a look at the necessity for an up-to-date Proxmox
cluster and how to apply new releases or patches regularly.

14
Updating/Upgrading Proxmox

There is no such thing as a perfect piece of software. All software matures as it progresses
through time by getting new features and finding and fixing hidden bugs. By releasing
regular updates and upgrades, the developers can ensure that their software does not
become obsolete due to the rapid evolution of technology. In this chapter, we will see how
to update and upgrade a Proxmox node. We will cover the following topics:

Introducing Proxmox updates
Updating Proxmox through the GUI
Updating Proxmox through the CLI
Updating after subscription change
Rebooting dilemma after updates

Introducing Proxmox updates
Proxmox updates keep a node up to date with the latest stable packages, patch security
vulnerabilities, and introduce new features. Each node checks for the latest updates and
alerts administrators through emails if there are any available updates. It is vital to keep all
Proxmox nodes up to date, especially when security patches are released. Proxmox
developers are very prompt in closing vulnerabilities through updates in a timely manner.

The number and nature of updates vary depending on your Proxmox subscription level.
For example, a Proxmox free version without a subscription receives the most up-to-date
stable updates, while a node with a subscription receives updates that are not so cutting
edge and go through an additional layer of testing. Delaying the new package releases for
subscription levels creates a buffer to address any issues that may not have been identified
during the initial release.

Updating/Upgrading Proxmox Chapter 14

[399]

This is not to say that a node without a subscription is not as stable as a paid version. Both
offer a very high level of stability and performance. The only difference is that the delay
allows subscribed updates to receive bug fixes which may not have been noticed during the
initial release of the update in the free version of Proxmox.

A Proxmox node can be updated through both the GUI and CLI. There is no strict
recommendation on which one to use. But it is best to perform at the console or through
server IPMI. The reason is, if you are using Open vSwitch as the networking option and if
the Openv Switch package has been updated in the release, it may interrupt network
connectivity.

Updating Proxmox through the GUI
In this section, we will see how to update a Proxmox node through the GUI. Proxmox
checks for daily updates and displays relevant packages for which updates are available
based on subscription levels. The Updates menu in the Proxmox GUI can be accessed by
selecting the node and clicking on the Updates menu. The following screenshot shows the
available update packages for our example node, pmx-01:

Updating/Upgrading Proxmox Chapter 14

[400]

In the preceding screenshot, we can see that the node pmx-01 has 48 updates available. The
Updates feature shows the name of the package, the current version installed, the new
available version, and a description of the package. To start the update or upgrade process,
we simply need to click on Upgrade. It will open the node shell on the default console, such
as noVNC, and will start the update process. Depending on the packages being updated, it
may be necessary to act on some prompts. The following screenshot shows a typical prompt
waiting for a response during the update process:

If the package list is old and has not been refreshed, it will notify that the package database
is out of date, as shown in the following screenshot:

Updating/Upgrading Proxmox Chapter 14

[401]

We can update the package list by clicking on Refresh through the GUI. To restart the
update process, click on the Upgrade button on the GUI again. The following screenshot
shows the updated interface in the GUI after clicking on Refresh:

The package database task window shows the list of the repositories being read and the size
of each package list being downloaded. We can stop the package database update by
clicking on Stop.

Proxmox downloads or refreshes the updated package list daily and sends an email to the
root email address. The Proxmox GUI update menu visually displays the list. If there are no
updates available, the list will be empty, with no messages shown.

Updating Proxmox through the CLI
As mentioned earlier in this chapter, in the recent Proxmox release, a bug in the software
resulted in upgrading through the GUI having some issues. The GUI is basically a frontend
of the behind-the-scene commands that are run through Proxmox scripts. Still, updating or
upgrading Proxmox through the CLI seems to be the safest path.

Updating/Upgrading Proxmox Chapter 14

[402]

There are no special Proxmox-specific commands to update a Proxmox node. The standard
apt-get for all Debian-based distributions is used for the updating process. Log in to the
Proxmox node directly on the node or through SSH, and then run the following command
to update the list of new packages:

apt-get update

After the package database is up to date, we can start the update process using the
following command:

apt-get dist-upgrade

Difference between upgrade and dist-upgrade
Besides the dist-upgrade command, there is another option available for upgrade:

apt-get upgrade

This is also the standard Debian-based Linux distribution command. However, there is a
big difference between these two commands.

The apt-get upgrade command will only update the already installed packages without
installing any new ones or making significant changes to the packages, such as removing
them. This also will not satisfy any dependency issues. If any packages require
dependencies to be resolved, this command will simply leave them alone. The main benefit
of this package is that it will very rarely break the system. On the downside, it also will not
update or patch everything that is necessary to bring a node up to date.

The apt-get dist-upgrade command, on the other hand, will upgrade all the packages
and remove any unneeded packages dictated by the package maintainer. This command
will also intelligently satisfy almost all the required dependencies for a package being
updated or marked for a new installation.

Based on the previous explanation of these two update commands, we can see that both of
these commands have advantages and disadvantages. But to keep a Proxmox node up to
date, the apt-get dist-upgrade command seems to be the right way to go. Proxmox is
not just another Linux distribution, but a highly specialized hypervisor. So packages that
are included in a distribution are carefully chosen by Proxmox developers. Also, there is no
mention of the apt-get upgrade command anywhere in the Proxmox wiki.

Updating/Upgrading Proxmox Chapter 14

[403]

Recovering from the grub2 update issue
Due to the latest grub2 update, there may be some instances, when updating a Proxmox
node through the GUI, that cause issues by breaking packages. This is especially true for an
earlier release, such as Proxmox 3.4. All the newer versions of Proxmox seem to have this
issue fixed. To prevent this issue from happening, it is best to upgrade a node through SSH
or the console by logging in directly on the node and not through the GUI. If the upgrade
has already been applied through the GUI and there are unconfigured packages due to
issues, perform the following steps to fix the issue:

Check package status:1.

 # pveversion -v

Before configuring grub, we need to know the device where Proxmox is installed.2.
We can find the device by running the following command:

 # parted -l

If there are incorrect packages, run the following commands to kill the3.
background dpkg process and configure all the packages, including the new
grub2:

 # killall dpkg
 # dpkg --configure -a

Select the Proxmox device name when prompted during the grub2 installation.4.
Reboot the node.5.
It is also possible to manually install grub2 on the Master Boot Record (MBR).6.
Run the following command to install grub2 on the boot device:

 # grub-install /dev/sdX

Updating/Upgrading Proxmox Chapter 14

[404]

Updating after a subscription change
The Proxmox subscription level for a node can be changed at any time by simply applying a
subscription key through the GUI. Different subscription levels have different natures of
package updates. If a node has started with no subscription, it can always be changed to
any paid subscription at any given time. After the subscription level changes, it is important
to update the node accordingly so that updates related to the subscription level can be
applied. In this section, we will see how to update a node if the subscription level of the
node changes at any time. For example, we are assuming that the node is on no subscription
and we are adding a paid-level subscription. We can upload a subscription key through the
Subscription tabbed menu for a node on the Proxmox GUI. But the modification that needs
to be made to activate the repository for subscription needs to be done through the CLI. To
disable the free subscription-level repository, we are going to comment out the following
command in the /etc/apt/sources.list file:

deb http://download.proxmox.com/debian stretch pve-no-subscription

After this, we need to uncomment the following line of code in
/etc/apt/sources.list.d/pve-enterprise.list to enable the subscription-level
repository:

deb https://enterprise.proxmox.com/debian/pve stretch pve-enterprise

After these modifications are made, we can update the Proxmox GUI by following the steps
in the Updating Proxmox through the GUI section in this chapter.

To update through the command line, we can follow the steps in the Updating Proxmox
through the CLI section in this chapter.

The same enterprise repository works for all paid subscription levels, such as Community,
Basic, Standard, and Premium. All paid subscriptions receive the same type of updates.

Rebooting dilemma after Proxmox updates
After an update, all administrators face the question of whether the node should be
rebooted or not. The Proxmox upgrade process is usually very informative and tells us
whether the node really needs a reboot. Most of the updates do not require any reboot.
They are simply packaged updates. But some upgrades, such as kernel releases, newer
grubs, and security patches, will require a node reboot every time. The exact method of
rebooting depends on the environment, number, and nature of the VMs stored per node. In
this section, we will see the most widely used method, which is by no means the only
method.

Updating/Upgrading Proxmox Chapter 14

[405]

For minimal virtual machine downtime, we can live-migrate all the VMs from a node to a
different node, and then migrate them back to the original node. As of Proxmox VE 5.0,
there is a nice GUI feature addition to instruct all VM migrations with a menu instead of
selecting and migrating one VM at a time. The feature is under the Bulk Actions drop-
down menu in the top-right corner of the GUI, as shown in the following screenshot:

As you can see from the previous screenshot, we can also start or stop all virtual machines.
The selected action will only take place on a selected node from the left-hand navigation
pane of the GUI. If the Proxmox node requires a reboot after an update, we can select Bulk
Stop from the Bulk Actions drop-down menu to shut down all VMs in the node, and then
restart the node. After the node restarts, start all VMs by clicking on Bulk Start under the
drop-down menu.

Always check and read all major or minor Proxmox update releases before
applying them to a node. This gives you a good idea of what is being
updated and its importance. If the importance or seriousness is not critical,
we can always put off the update to avoid any node reboots. You can refer
to the Proxmox roadmap, which is a good place to find out new feature
additions, bug fixes, or simply information on changes, at http:/ ​/​pve.
proxmox. ​com/ ​wiki/ ​Roadmap#Roadmap.

The official Proxmox forum is also a great place to hang out to get information on issues
due to updates. This is also a great place to learn about fixes posted by Proxmox developers
if there are any issues with the released update.

Visit the official Proxmox forum at the following link:

https://forum.proxmox.com

http://pve.proxmox.com/wiki/Roadmap#Roadmap
http://pve.proxmox.com/wiki/Roadmap#Roadmap
http://pve.proxmox.com/wiki/Roadmap#Roadmap
http://pve.proxmox.com/wiki/Roadmap#Roadmap
http://pve.proxmox.com/wiki/Roadmap#Roadmap
http://pve.proxmox.com/wiki/Roadmap#Roadmap
http://pve.proxmox.com/wiki/Roadmap#Roadmap
http://pve.proxmox.com/wiki/Roadmap#Roadmap
http://pve.proxmox.com/wiki/Roadmap#Roadmap
http://pve.proxmox.com/wiki/Roadmap#Roadmap
http://pve.proxmox.com/wiki/Roadmap#Roadmap
http://pve.proxmox.com/wiki/Roadmap#Roadmap
https://forum.proxmox.com

Updating/Upgrading Proxmox Chapter 14

[406]

Applying update without reboot
Although there is no built-in feature in Proxmox that will allow us to update the host
without ever needing a reboot, there is a third-party solution to achieve this and never have
to reboot again after applying an update. A server reboot can be very disruptive for a busy
virtual environment where downtime has a high price tag on it. A service named
KernelCare from CloudLinux can solve this issue. More information about KernelCare can
be found at https:/ ​/​www. ​cloudlinux. ​com/​all- ​products/ ​product- ​overview/ ​kernelcare. ​

Simply put, what KernelCare does is applies security patches on the runtime kernel without
needing to reboot a node. This allows a node to stay updated at all times. Due to the
possible downtime, many administrators forego patching. With KernelCare, security
updates are applied as they become available. This does not disrupt the normal functioning
or services of the node in any way. The extremely affordable price and the easiness of the
installation make KernelCare an effective solution for an environment of any size.

KernelCare also provides completely free trial licenses to try out the service before making a
purchase. They can be installed in minutes by following the official documentation
at http:/​/​docs.​kernelcare. ​com/ ​index. ​html? ​installation. ​htm.

Summary
In this chapter, we learned about the importance of keeping Proxmox nodes up to date in a
cluster and how to properly update and upgrade a node through both the GUI and CLI. We
also covered when to reboot or not reboot a node after an upgrade.

In the next chapter, we are going to learn how to troubleshoot a Proxmox cluster when
various issues arise. These issues have been taken from real-world Proxmox clusters serving
live users.

https://www.cloudlinux.com/all-products/product-overview/kernelcare
https://www.cloudlinux.com/all-products/product-overview/kernelcare
https://www.cloudlinux.com/all-products/product-overview/kernelcare
https://www.cloudlinux.com/all-products/product-overview/kernelcare
https://www.cloudlinux.com/all-products/product-overview/kernelcare
https://www.cloudlinux.com/all-products/product-overview/kernelcare
https://www.cloudlinux.com/all-products/product-overview/kernelcare
https://www.cloudlinux.com/all-products/product-overview/kernelcare
https://www.cloudlinux.com/all-products/product-overview/kernelcare
https://www.cloudlinux.com/all-products/product-overview/kernelcare
https://www.cloudlinux.com/all-products/product-overview/kernelcare
https://www.cloudlinux.com/all-products/product-overview/kernelcare
https://www.cloudlinux.com/all-products/product-overview/kernelcare
https://www.cloudlinux.com/all-products/product-overview/kernelcare
https://www.cloudlinux.com/all-products/product-overview/kernelcare
https://www.cloudlinux.com/all-products/product-overview/kernelcare
https://www.cloudlinux.com/all-products/product-overview/kernelcare
https://www.cloudlinux.com/all-products/product-overview/kernelcare
https://www.cloudlinux.com/all-products/product-overview/kernelcare
https://www.cloudlinux.com/all-products/product-overview/kernelcare
http://docs.kernelcare.com/index.html?installation.htm
http://docs.kernelcare.com/index.html?installation.htm
http://docs.kernelcare.com/index.html?installation.htm
http://docs.kernelcare.com/index.html?installation.htm
http://docs.kernelcare.com/index.html?installation.htm
http://docs.kernelcare.com/index.html?installation.htm
http://docs.kernelcare.com/index.html?installation.htm
http://docs.kernelcare.com/index.html?installation.htm
http://docs.kernelcare.com/index.html?installation.htm
http://docs.kernelcare.com/index.html?installation.htm
http://docs.kernelcare.com/index.html?installation.htm
http://docs.kernelcare.com/index.html?installation.htm
http://docs.kernelcare.com/index.html?installation.htm
http://docs.kernelcare.com/index.html?installation.htm
http://docs.kernelcare.com/index.html?installation.htm
http://docs.kernelcare.com/index.html?installation.htm
http://docs.kernelcare.com/index.html?installation.htm

15
Proxmox Troubleshooting

In this chapter, we are going to learn about the common Proxmox issues found in a
production environment and solutions to those issues. Once a Proxmox cluster is set up, it
usually runs without issues. However, when issues arise, a system administrator's
knowledge is tested. Learning how to properly troubleshoot can be made easier by learning
about other people's resolutions. Throughout this chapter, we will gain some insight into
Proxmox troubleshooting, so that hopefully, when these issues arise in our own Proxmox
clusters, we will be able to identify and resolve problems quickly and with ease.

All the issues explained in this chapter are those that may be commonly faced by others. It
is just not possible to explain all error possibilities, mainly due to all of the components that
work in concert to make up a stable system. As you run your own cluster, you may face
other issues that we have not documented here.

The issues are divided into the following sections:

Proxmox nodes
The main cluster
Storage
Network connectivity
The KVM virtual machine
LXC containers
Backup/restore
The VNC/SPICE console
A firewall

Proxmox Troubleshooting Chapter 15

[408]

Proxmox node issues
This section contains issues related to the Proxmox node itself.

Issue – fresh Proxmox install stuck with /dev to
be a fully populated error during node reboot
This issue occurs when the OS tries to boot with a non-standard VGA driver. To prevent
this issue, we need to add and modify some grub options. Restart the node, and then press
the E key from the Proxmox boot menu. At the end of the Kernel boot line, add the
following nomodeset, as shown in the following screenshot:

Proxmox Troubleshooting Chapter 15

[409]

Press Ctrl + X or F10 to boot the node normally. To make this option permanent, make the
following modifications in /etc/default/grub:

Uncomment GRUB_TERMINAL=console
Comment out GRUB_GFXMODE=some_X,some_Y

Issue – rejoining a node to a Proxmox node with
the same old IP address
If you are rejoining a Proxmox node back to the cluster with the same IP address, then the
joining command must run with the -force option. Run the following command from the
node that is being rejoined:

pvecm add <any_proxmox_node_ip) -force

Without the additional -force option, the node will not be joined and an error message
will be displayed informing you of the existence of a certificate. This also applies when a
node is reinstalled completely with the same hostname and IP address.

Issue – Proxmox installation completed but grub
is in an endless loop after reboot
This is a common occurrence when Proxmox is installed on a node with newer UEFI BIOS.
Simply disabling the UEFI mode will allow the system to boot. If this does not work,
Proxmox should be installed manually over Debian Stretch.

To get information and instructions on how to install Proxmox when the
ISO installer does not work, refer to the following:
http://pve.proxmox.com/wiki/Install_Proxmox_VE_on_Debian_Stretch

http://pve.proxmox.com/wiki/Install_Proxmox_VE_on_Debian_Stretch

Proxmox Troubleshooting Chapter 15

[410]

Issue – LSI MegaRAID 9240-8i/9240-4i causes an
error during booting of the Proxmox node
This issue can be prominent in the Supermicro motherboard with the LSI chipset for hot-
swap bays. There are two ways in which we can use cards in the Proxmox mode:

Downloading and updating the LSI driver
We can download and install the latest LSI drivers in Proxmox to activate the LSI cards by
performing the following steps:

Run the following command to install the necessary program for compiling:1.

 # apt-get install build-essential

Run the following command to install header files for the currently installed2.
kernel:

 # apt-get install pve-headers-<version>-pve

Download the LSI drivers from3.
http://www.avagotech.com/support/download-search.
Extract the downloaded driver in /usr/local/src.4.
After extracting the driver, the directory may appear as follows:5.

 # /usr/local/src/megaraid_sas-v00.00.05.30

Enter the driver directory and rename makefile to makefile.orig. Then, copy6.
makefile.standalone to makefile.
Compile the source using the following command:7.

 # make -C /usr/src/linux-headers-<version>/ M=$PWD modules

It will show some text output and warnings, but they are safe to ignore. The
driver will end up in the following directory:

 /usr/local/src/megaraid_sas-v00.00.05.30/megaraid_sas.ko

http://www.avagotech.com/support/download-search

Proxmox Troubleshooting Chapter 15

[411]

Remove or rename the existing driver file in the following directory:8.

 /lib/modules/<version>-pve/kernel/drivers/scsi/megaraid/
 megaraid_sas.ko

Copy the newly compiled driver to the previous directory, as follows:9.

 # cp /usr/local/src/megaraid_sas-v00.00.05.30/megaraid_sas.ko
 /lib/modules/<version>-pve/kernel/drivers/scsi/megaraid/
 megaraid_sas.ko

Back up the initial RAM disk by renaming it, as follows:10.

 # mv /boot/initrd.img-2.6.32-7-pve /boot/initrd.img-<version>
 -pve.bak

Run the following command to update initramfs:11.

 # update-initramfs -c -k 2.6.32-7-pve

Run the following command to update grub, and then reboot it:12.

 # update-grub

Updating the Supermicro BIOS
We can also update the Supermicro BIOS to the latest firmware to use the LSI cards. Always
check whether you have the latest firmware before updating it. For instructions on how to
update the Supermicro BIOS firmware, refer to
http://wahlnetwork.com/2013/06/03/the-easy-button-for-supermicro-bios-

upgrades/.

Issue – the Upgrade button is disabled on the
Proxmox GUI, which prevents the node upgrade
There are three common reasons why the Upgrade button could be disabled on the
Proxmox GUI. Check the following alternatives to fix this issue:

If the node does not have a valid subscription, ensure that the pve-no-1.
subscription repository is added. For Proxmox repository information, visit
the link: https://pve.proxmox.com/wiki/Package_repositories.

http://wahlnetwork.com/2013/06/03/the-easy-button-for-supermicro-bios-upgrades/
http://wahlnetwork.com/2013/06/03/the-easy-button-for-supermicro-bios-upgrades/
https://pve.proxmox.com/wiki/Package_repositories

Proxmox Troubleshooting Chapter 15

[412]

Refresh the browser cache to reload the graphic interface.2.
A very basic mistake, but not unheard of, is to make sure that the root user is3.
logged in to facilitate the upgrade. The Upgrade button is only visible when you
log in with the root privilege.

Issue – Proxmox cannot start due to the
getpwnam error
Boot the Proxmox node in recovery mode using the Proxmox installation disk, or select the
recovery option from Proxmox's boot menu at the beginning of the boot process. After the
recovery shell is loaded, run the following commands from the command prompt and then
reboot:

 # apt-get update && apt-get dist-upgrade

Issue – cannot log in to the GUI as root after
reinstalling Proxmox on the same node
In order to log in to the Proxmox GUI as root, local loopback must be enabled in the
network interface file. Look for the following two lines to make sure they are not
commented out in /etc/network/interfaces:

 auto lo
 iface lo inet loopback

The main cluster issues
This section contains issues related to the main Proxmox's cluster operations.

Proxmox Troubleshooting Chapter 15

[413]

Issue – Proxmox virtual machines are running,
but the Proxmox GUI shows that everything is
offline
This is usually caused by one of the three services, such as pvedaemon, pvestatd, or
pveproxy crashing or stopping working for any number of reasons. Simply restarting them
through SSH will fix this issue. One of the common causes of this issue is if any NFS shared
storage gets stuck during an extended backup task. A node reboot will always fix this issue.
But reboot is not always possible in a production node. Forcefully unmounting the NFS
shared storage under /mnt/pve/<share>, then running the following commands will
show everything normally again:

 # service pvedaemon restart
 # service pveproxy restart
 # service pvestatd restart

Issue – kernel panic when disconnecting USB
devices, such as a keyboard, mouse, or UPS
There is no real solution to this issue yet, as the issue is not reproducible all the time. This
issue has been seen on a variety of hardware with both standard and nonstandard Proxmox
installations. However, almost all of the time, the issue does not cause the server to freeze
permanently, thus the panic can just be ignored and you can go on as usual.

Kernel panic seems to mostly occur with kernels 2.6.32-26, 2.6.32-27, and 2.6.32-28. It is
nonexistent in kernel 3.2 and later. For the regular day-to-day operations of a cluster, this
issue can be safely ignored unless it causes the node to freeze on occasions.

Issue – virtual machines on Proxmox will not shut
down if shutdown is initiated from the Proxmox
GUI
This issue is not consistent and is not directly related to Proxmox. The Shutdown button on
Proxmox's GUI only sends an ACPI signal to a virtual machine to initiate the shutdown
process.

Proxmox Troubleshooting Chapter 15

[414]

Once the VM receives an ACPI signal, it starts the shutdown process. However, if the VM
has a number of processes running in the memory, it might take a while to end processes
before shutdown. The ending of processes may take longer, which causes Proxmox to issue
a timeout error. The issue may occur for both Windows and Linux. The workaround for this
is to access the VM through a console or SPICE and then manually shut down the VM.

Issue – kernel panic with HP NC360T (Intel
82571EB chipset) only in Proxmox VE 3.2
An immediate workaround is to use Broadcom for the network interface card. A permanent
fix is to download E1000 drivers from the Intel website and compile a module from those
sources. The E1000 driver can be downloaded from this link:
http://www.intel.com/support/network/sb/cs-006120.htm.

Issue – the Proxmox cluster is out of quorum and
cluster filesystem is in read-only mode
This occurs when a node falls out of quorum. To prevent an error occurring in the cluster
configuration files, Proxmox puts the cluster filesystem in the read-only mode for the node
in question. Run the following commands from the node with this issue. We have to stop
the cluster service, start it in local mode, delete or move the existing corosync.conf file,
and then restart the cluster. A new corosync.conf file will be synced with the node with a
read-only issue. Perform the following steps to overcome this issue:

Stop the cluster in the node using the following command:1.

 # systemctl stop pve-cluster

Start the cluster filesystem in the local node using the following command:2.

 # /usr/bin/pmxcfs -l

Remove or back up the corosync.conf file using the following command:3.

 # mv /etc/pve/corosync.conf directory_path

Stop and start the cluster normally using the following commands:4.

 # systemctl stop pve-cluster
 # systemctl start pve-cluster

http://www.intel.com/support/network/sb/cs-006120.htm

Proxmox Troubleshooting Chapter 15

[415]

Issue – VM will not respond to shutdown or
restart
First check whether High Availability (HA) is enabled for the VM or not, as HA will
prevent any manual action such as the VM shutdown, stop, restart, or start because the
main purpose of HA is for actions to be taken without user interaction. In order to manually
perform any task for a VM, we need to disable HA for the VM, perform a task, and then re-
enable HA. Also, if anything inside the guest VM is preventing it from shutting down, it
will not respond to the GUI shutdown or restart option. In such cases, it is best to shutdown
or restart from within the guest VM.

Issue – Proxmox GUI not responding after Firefox
update
Due to a Firefox update, the Proxmox GUI may become non-responsive, even after
successful login. In Firefox, on the address bar, type about:config.

On the search bar, type touch and find the following entry:

dom.w3c_touch_events.enabled

Change the value to 0 and try to log in to the GUI again.

Issue – the Proxmox GUI is not showing RRD
graphs
If a node or VM is running fine, but there are no RRD graphs on the Status page, it might be
due to the stuck pvestatd service or corrupted RRD cache. Run the following commands
to restart the pvestatd service and clear the RRD cache:

 # rrdcache -P FLUSHALL
 # systemctl restart pvestatd

Proxmox Troubleshooting Chapter 15

[416]

Storage issues
This section contains issues related to storage systems supported by Proxmox, such as local,
NFS, Ceph, GlusterFS, and so on.

Issue – deleting a damaged LVM from Proxmox
with the error read failed from 0 to 4096
This error occurs when a LVM storage in Proxmox becomes partially or fully corrupted. In
such cases the LVM may need to remove manually. This will remove the LVM which will
cause data loss. Run the following command from the CLI to remove the LVM:

 # dmsetup remove /dev/<volume_group>/<lvm_name>

Issue – Proxmox cannot mount NFS share due to
the timing out error
Some NFS servers, such as FreeNAS, do a reverse lookup for hostnames. In such cases
accessing the NFS storage from Proxmox causes timing out error. We need to add Proxmox
hostnames to the host files of the NFS server to prevent time out error:

 # nano /etc/hosts

Issue – how to delete leftover NFS shares in
Proxmox or what to do when the NFS stale file
handle error occurs?
When NFS shares are deleted from Proxmox storage, in some cases, it still remains
mounted, which causes the NFS stale file handle error. Simply manually unmounting the
share and removing the NFS mount point folder from the Proxmox directory fixes this
issue. Run the following commands from the Proxmox node:

 # umount -f /mnt/<nfs_share>
 # rmdir /mnt/<nfs_share>

Proxmox Troubleshooting Chapter 15

[417]

Issue – Proxmox issues --mode session exit code
21 errors while trying to access the iSCSI target
Run the following command from the Proxmox node to fix the error:

 # iscsiadm -m node -l ALL

Issue – cannot read an iSCSI target even after it
has been deleted from Proxmox storage
When trying to read the same iSCSI target after it has been deleted from Proxmox storage,
an error occurs mentioning the target that has already been added to Proxmox. In these
cases, the iSCSI daemon has to be restarted to clear the issue. Run the following command
from all the Proxmox nodes:

 # /etc/init.d/open-iscsi restart

Issue – a Ceph node is removed from the
Proxmox cluster, but OSDs still show up in PVE
This is a common occurrence when a Ceph node is taken offline without removing all the
Ceph-related processes first. The OSDs in the node must be removed or moved to another
node before taking the node offline. Run the following commands to remove OSDs:

 # ceph osd out <osd.id>
 # ceph osd crush remove osd <osd.id>
 # ceph auth del osd.<id>
 # ceph osd rm <osd.id>

Issue – the no such block device error during
creation of an OSD through the Proxmox GUI
When creating an OSD through the Proxmox GUI, sometimes this error occurs. This is not a
common occurrence and is not reproducible at all times. Although there are no permanent
fixes for this issue, it can be ignored. So, just retry to create an OSD. The issue seems to be
isolated in Proxmox 4.x releases.

Proxmox Troubleshooting Chapter 15

[418]

Issue – the fstrim command does not trim unused
blocks for the Ceph storage
To properly trim unused blocks for virtual disks stored on the Ceph storage, perform the
following steps:

Use a virtio disk type for a virtual disk.1.
Enable the discard option through <vm_id>.conf. Add discard=on to the drive2.
properties of virtio0, like the following:

 # <rbd_storage>:<virtual_disk>,cache=writethrough,
 size=50G,discard=on

Issue – the RBD couldn't connect to cluster (500)
error when connecting Ceph with Proxmox
Authentication failure is the most common cause for this error when Ceph RBD storage
cannot connect to Proxmox. Proxmox requires a copy of the Ceph admin keyring to
authenticate. The name of the keyring must match the storage ID assigned through the
Proxmox GUI. Refer to Chapter 5, Installing and Configuring Ceph, for information on how to
set up the Ceph cluster to be used as storage backend.

Issue – changing the storage type from IDE to
VirtIO after the VM has been set up and the OS
has been installed
If IDE was used during the initial VM setup and needs to be changed to VirtIO later, this
can be done through the Proxmox GUI without reinstalling the OS. The VM will need to be
powered off first, and then the virtual disk needs to be removed through the Proxmox GUI.
After clicking on Remove, the virtual disk will become unused, as shown in the following
screenshot:

Proxmox Troubleshooting Chapter 15

[419]

Double-click on the unused virtual disk or navigate to Add | Hard Disk to add it back to
the VM. Select VirtIO as Bus/Device from the dialog box. It is very important to keep in
mind that following this procedure on a Windows VM, which has one single IDE disk
image, will make the VM inaccessible. The reason is Windows does not come equipped
with VirtIO driver, it needs to be manually loaded. To change the primary Windows disk
image from IDE to VirtIO, add a second disk image of any size into the Windows guest VM,
then boot into it. Load the VirtIO driver ISO file downloaded from https:/ ​/​fedorapeople.
org/​groups/​virt/ ​virtio- ​win/ ​direct- ​downloads/ ​stable- ​virtio/ ​virtio- ​win. ​iso.

Go to Control Panel | Device Manager and update the disk drive detected using the driver
from the loaded ISO image. Once the proper driver is loaded and the VirtIO disk drive is
fully recognized, shutdown Windows. Then remove the disk image added for this purpose
and follow the steps described earlier in this section.

Issue – the pveceph configuration not initialized
(500) error when you click on the Ceph tab in the
Proxmox GUI
This error occurs when you click on the Ceph tab in the Proxmox GUI without initializing
the Ceph storage. If Ceph is not going to be used along with Proxmox on the same cluster,
then this error should simply be ignored. But if any Proxmox node is going to be used to
manage Ceph through the Proxmox GUI, then simply copy the Ceph configuration file from
/etc/pve/ceph.conf into /etc/ceph/ceph.conf, which will allow you to manage Ceph
even if there is no OSD or mon in that node. Since Ceph configuration may change over
time, it is recommended to create a symlink for the configuration file instead of a simple
copy. The following command will create a symlink of the Ceph configuration file in the
/etc/ceph directory:

 # ln -s /etc/pve/ceph.conf /etc/ceph/ceph.conf

https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/stable-virtio/virtio-win.iso

Proxmox Troubleshooting Chapter 15

[420]

Issue – the CephFS storage disappears after a
Proxmox node reboots
CephFS needs to be mounted in order to make it available for storage service. If the mount
point is not set in /etc/fstab, it will need to be remounted after each reboot. The
following format is used to enter the CephFS in /etc/fstab:

id={user-ID}[,conf={path/to/conf.conf}] /mount/path fuse.ceph defaults 0 0
id=admin,conf=/etc/ceph/conf.conf /mnt/<path> fuse.ceph defaults 0 0

Issue – VM cloning does not parse in the Ceph
storage
When full cloning is performed on a virtual machine stored on Ceph storage, it looses parse
on the virtual disk. For cloning, Proxmox uses the qemu-img method instead of rbd
flattening. Until it is implemented in later versions of Proxmox, VM clones will lose parsing
on Ceph storage.

Issue – VM disk images stored on ZFS is
extremely slow
If the VM disk images are stored on ZFS storage, which is configured as RAIDZ3, the VMs
will suffer a big performance loss. Especially if the ZFS loses a drive and it goes into data
rebalancing, the load on the storage will make the VM almost unusable. When using ZFS,
the RAID10 will provide the best performance possible from ZFS storage. RAID10 will have
paired vdevs where data will be mirrored and then will be stripped among multiple vdevs.
One drawback of using RAID10 is it provides half of the disk capacity of the total number
of drives. For example, if 20 2 TB drives are used in a RAID10 ZFS configuration, then the
usable space will only be 20 TB. For a non-critical node such as backup storage, the use of
RAIDZ3 could be a good choice, since it will provide the maximum capacity possible at the
expense of performance.

Proxmox Troubleshooting Chapter 15

[421]

Network connectivity issues
This section contains issues related to virtual or physical network connectivity within
Proxmox.

Issue – no connectivity on Realtek RTL8111/8411
rev. 06 network interfaces
Some newer Realtek chipsets don't get compiled with the right drivers. This causes the
interface to be up without any network traffic. In order to fix this issue, the older driver
needs to be downloaded from the Realtek site and compiled manually. The driver can be
downloaded from http://www.realtek.com.tw/Downloads/.

Since this driver is manually installed, during a kernel update it will get updated
automatically. To prevent this and ensure that the driver builds itself automatically when a
new kernel is installed, run the following commands and then reboot the node:

 # apt-get install dkms build-essential pve-headers-4.10.15-pve
 # mkdir /usr/src/r8168-8.037.00
 # cat << EOF > /usr/src/r8168-8.037.00/dkms.conf
 PACKAGE_NAME=r8168
 PACKAGE_VERSION=8.037.00
 MAKE[0]="'make'"
 BUILT_MODULE_NAME[0]=r8168
 BUILT_MODULE_LOCATION[0]="src/"
 DEST_MODULE_LOCATION[0]="/kernel/updates/dkms"
 AUTOINSTALL="YES"
 EOF
 # dkms add -m r8168 -v 8.037.00
 # dkms build -m r8168 -v 8.037.00
 # dkms install -m r8168 -v 8.037.00
 # dkms status

http://www.realtek.com.tw/Downloads/

Proxmox Troubleshooting Chapter 15

[422]

Issue – network performance is slower with the
E1000 virtual network interfaces
The performance of the E1000 virtual network interfaces is about 30-35% less than VirtIO
virtual network interfaces. Changing vNICs to VirtIO will increase the overall network
bandwidth of a virtual machine. The VirtIO drivers are included in all major Linux flavors.
For Windows machines, an ISO file with VirtIO drivers can be downloaded from
http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers.

Issue – patch port for Open vSwitch in Proxmox
not working
Currently, there are three Open vSwitch options that are fully supported through Proxmox,
such as OVSBridge, OVSIntPort, and OVSBond. The OVSPatchPort option that is required
for the patch port cannot be configured through the Proxmox GUI. Thus, even if we
manually create a configuration in the network interface file, it still seems to be out of reach.
An alternative solution where the patch port is required is to use an Open vSwitch fake
bridge. A patch port allows us to create an extension of the main bridge. For example, if we
are connecting two physical switches with each other, the ports where we will connect the
network cable to becomes patch ports for these two switches. Fake bridges look and act like
full Open vSwitch bridges but are tied to a particular VLAN. A fake bridge depends on an
already configured main Open vSwitch bridge. Assuming that the main bridge is vmbr0,
the content of the /etc/network/interfaces will look as follows for a fake bridge named
11 for VLAN ID #11:

 auto vmbr11
 allow-vmbr0 vmbr11
 iface vmbr11 inet manual
 ovs_bridge vmbr0
 ovs_type OVSBridge
 ovs_options vmbr0 11

The entry option for a fake bridge is as follows:

ovs_options <main_bridge> <vlan_id>

We can now connect a VM to this bridge without assigning any VLAN ID to the virtual
network interface.

http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers

Proxmox Troubleshooting Chapter 15

[423]

Issue – trying to add a node to a newly created
Proxmox cluster when nodes do not form quorum
From Proxmox 4.0 and later, we now require the multicast feature. Without this, nodes will
be unable to form quorum. So, when we add a new node to a cluster, if the process gets
stuck at Waiting for Quorum..., we need to ensure that multicast is enabled on the switch.
As soon as multicast is available, nodes will form quorum without any issues.

Issue – implemented IPv6 but firewall rules do not
get applied
All firewall rules are primarily applied to IPv4 traffic. In order to also apply these rules to
IPv6, we need to ensure that the following entry is present in /etc/network/interfaces:

iface lo inet6 loopback

We also need to load the IPv6 driver into /etc/modules during boot. Simply add the
following entry in /etc/modules:

ipv6

KVM virtual machine issues
This section contains issues related to KVM virtual machines only.

Issue – Windows 7/XP machine converted to
Proxmox KVM hangs during boot
The Windows operating system can be unforgiving when you convert or migrate from one
type of hardware to another. It is certainly possible to convert/migrate just about any
Windows OS, as long as a proper procedure is followed. For in-depth information on the
proper procedure to migrate Windows machines to a virtual machine, refer to
http://pve.proxmox.com/wiki/Migration_of_servers_to_Proxmox_VE#mergeide.

http://pve.proxmox.com/wiki/Migration_of_servers_to_Proxmox_VE#mergeide

Proxmox Troubleshooting Chapter 15

[424]

Issue – Windows 7 VM does not reboot, instead it
shuts down, requiring a manual boot from
Proxmox
This issue causes a Windows 7 virtual machine to shut down when a reboot is initiated
from within the OS. A manual power-on through the Proxmox GUI is required to power up
the VM. This is an issue caused by the installation of Windows itself, especially a VM that is
configured with a standard video. Changing the display to SPICE solves the issue for this
type of Windows 7 virtual machine. This is not a common occurrence and causes an issue in
some Windows 7 VMs, while others run just fine. Following screenshot shows the display
adapter selected as SPICE:

Issue – the qemu-img command does not convert
the .vmdk image files created with the .ova
template in Proxmox VE 5.0
The .vmdk image files created with VMware's .ova template may present the following
error messages during conversion with the qemu-img command:

qemu-img convert -f vmdk disk1.vmdk -O qcow2 vm-101-disk-1.qcow2
qemu-img: 'image' uses a vmdk feature which is not supported by this qemu
version: VMDK version 3
qemu-img: Could not open 'disk1.vmdk': Could not open 'disk1.vmdk': Wrong
medium type
qemu-img: Could not open 'disk1.vmdk'

Proxmox Troubleshooting Chapter 15

[425]

The .vmdk3 format is only supported in pve-qemu-kvm 2.0 and later. Enter the following
command to check the version installed in the Proxmox node:

 # pveversion -v | grep pve-qemu-kvm

Look for the version number of pve-qemu-kvm. A .vmdk file can still be converted by
following the instructions given at
http://ask.xmodulo.com/convert-ova-to-qcow2-linux.html.

Issue – online migration of a virtual machine fails
with a failed to sync data error
In order to migrate virtual machines online without powering them off, the virtual disk of
the VM must be on a shared storage system. Any VM with a virtual disk on local storage
cannot be migrated live. The error will look as follows:

Aug 12 19:54:37 starting migration of VM 134 to node 'pmx-02' (172.17.2.2)
Aug 12 19:54:37 copying disk images
Aug 12 19:54:37 ERROR: Failed to sync data - can't do online migration - VM
uses local disks
Aug 12 19:54:37 aborting phase 1 - cleanup resources
Aug 12 19:54:37 ERROR: migration aborted (duration 00:00:00): Failed to
sync data - can't do online migration - VM uses local disks
TASK ERROR: migration aborted

Issue – no audio in Windows KVM
Sound devices must be added manually by adding the following line in a KVM virtual
machine configuration file located in /etc/pve/qemu-server/<vm_id>.conf:

args: -device intel-hda,id=sound5,bus=pci.0,addr=0x18 -device hda-
micro,id=sound5-codec0,bus=sound5.0,cad=0 -device hda-duplex,id=sound5-
codec1,bus=sound5.0,cad=1

After saving the configuration file, the VM will need to be powered off and then powered
on. Windows 7 and later will automatically install the necessary driver for the sound
device.

http://ask.xmodulo.com/convert-ova-to-qcow2-linux.html

Proxmox Troubleshooting Chapter 15

[426]

Issue – the VirtIO virtual disk is not available
during the Windows Server installation
The VirtIO drivers are not included in the Windows Server installation. During the
installation, the Windows setup will not see any VirtIO virtual disks attached to the virtual
machine. A VirtIO driver must be downloaded and loaded during the installation in order
to activate the VirtIO virtual disk with the Windows operating system. The ISO image of
VirtIO drivers can be downloaded from
http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers.

LXC container issues
This section contains issues related to LXC containers only.

Issue – a Proxmox node hangs when trying to
stop or restart an LXC container
This has been an issue since the initial release of Proxmox VE 4.0. Due to a bug when
shutdown, stop, or restart was initiated for LXC container from GUI, the node itself became
unusable and all network connectivity was lost. The only way to come out of it was to
reboot the entire node. In consecutive later releases, this issue has been addressed and
patched by Proxmox developers. If you are in Proxmox 4.0, an immediate upgrade to 4.1 or
later is highly recommended.

Issue – the noVNC console only shows a cursor
for LXC containers
Due to unknown reasons, the noVNC console may only show a cursor, as shown in the
following screenshot, when trying to access an LXC container:

http://www.linux-kvm.org/page/WindowsGuestDrivers/Download_Drivers

Proxmox Troubleshooting Chapter 15

[427]

This does not mean that the container is frozen. Simply hit Enter to get to the login prompt.

Backup/restore issues
This section contains issues related to backing up and restoring Proxmox.

Issue – a Proxmox VM is locked after backup
crashes unexpectedly
This is a common cause after a VM backup is interrupted or crashed. Simply unlocking the
VM through SSH using the following command will fix this issue:

 # qm unlock <vm_id>

Proxmox Troubleshooting Chapter 15

[428]

Issue – how can Proxmox back up only the
primary OS virtual disk instead of all the virtual
disks for a VM?
By default, a Proxmox backup will back up all the virtual disks assigned to a VM. If we
want to exclude certain virtual disks from the backup process, we only need to add the
backup=no option at the end of a virtual disk line item in <vm_id>.conf, as follows:

virtio0: rbd-hdd-01:vm-101-disk1,size=80G
virtio0: rbd-hdd-01:vm-101-disk2,size=200G,backup=no

In the previous example, the virtual machine has two virtual disks. The disk1 is for the
primary OS and disk2 is for the secondary. By adding backup=no, Proxmox will skip this
disk during the backup process and only back up the primary disk.

Issue – backup of virtual machines stops
prematurely with an operation not permitted error
This error usually looks like this from syslog of the Proxmox node:

ERROR: job failed with err -1 - Operation not permitted
INFO: aborting backup job
INFO: stopping kvm after backup task
ERROR: Backup of VM 101 failed - job failed with err -1 - Operation not
permitted

The primary cause of this issue is when the backup storage has less space than the total
storage required for an assigned backup task. Verify the total storage space that is required
for backing up the selected virtual machines.

Proxmox Troubleshooting Chapter 15

[429]

Issue – a backup task takes a very long time to
complete, or it crashes when multiple nodes are
backing up to the same backup storage
When multiple Proxmox nodes are backing up to the same backup storage simultaneously,
it tends to take a very long time or the backup crashes. This is a common occurrence when
backup traffic coexists with the main cluster traffic on a gigabit network and the backup
node only has one network interface. By separating backups in multiple subnets over
multiple network interfaces, we can prevent this issue.

Issue – backup of virtual machines aborts a
backup task prematurely
During a VM backup, the following error message appears in the backup log after it aborts
a running backup task:

101: INFO: status: 1% (129309081/4294967296), sparse 0% (886784), duration
91, 33/33 MB/s
[...]
107: INFO: status: 80% (2706263244/4294967296), sparse 16% (698703462),
duration 1950, 5/4 MB/s
107: ERROR: interrupted by signal
107: INFO: aborting backup job

This error usually occurs when there is a version mismatch for the pve-qemu-kvm package
in Proxmox. At the time of writing, the available pve-qemu-kvm package version is 2.9.0-4.
Check for the version that is installed when you get this error during a backup. If you're
using an older version, then upgrade to the latest version using the following command to
fix the issue.

Issue – backup storage has a lot of .dat files and
.tmp folders using the storage space
Due to a backup crash or unfinished backups, there may be backup files leftover in the
backup storage, such as the .dat files and .tmp folders. These files and folders can be
easily deleted to reclaim storage space.

Proxmox Troubleshooting Chapter 15

[430]

VNC/SPICE console issues
This section contains issues related to the VNC and SPICE consoles in Proxmox.

Issue – the mouse pointer is not shared with
SPICE (virt-viewer) on Windows 8 VM
In order to have a seamless mouse point between the VM and host machine, SPICE guest
tools must be installed inside the VM. The guest tools package contains full driver support
for Windows 7 and Windows 2008 R2. However, the support for Windows 8 or 8.1 is close
to nonexistent.

Issue – remote viewer is unable to connect to a
SPICE-enabled virtual machine on the Windows
OS
This issue is caused by a firewall that blocks the SPICE port, which prevents SPICE-enabled
virtual machines from being connected to SPICE. Open port 3128 from Windows firewall to
allow remote viewer to connect to a SPICE virtual machine.

Firewall issues
This section shows issues regarding the Proxmox firewall feature.

Issue – rules are created and a firewall is enabled
for vNIC, but rules do not get applied
On rare occasions, due to changes in the network interface or other reasons, the firewall
service may get stuck. In such cases, we can restart the service using the following
command:

 # systemctl restart pve-firewall

Proxmox Troubleshooting Chapter 15

[431]

If the previous command does not help, then check the syslog of the node to look for a clue.
If nothing helps, then a reboot will clear any firewall issues. As of Proxmox VE 5.0, if a
firewall becomes inactive, it does not fall back on a predefined set of protection; a firewall
simply becomes nonexistent.

Issue – a firewall is enabled for a VM and the
necessary rules are created, but nothing is being
filtered for that VM
This issue may occur when the firewall is not enabled in the virtual network interface of the
VM. For each VM, a firewall needs to be enabled in two different places. The first one is
under the Firewall tab menu, as shown in the following screenshot:

Proxmox Troubleshooting Chapter 15

[432]

Another place where the firewall needs to be enabled is in the vNIC of the VM, as shown in
the following screenshot:

Summary
We hope this troubleshooting chapter has provided you with some insight into some of the
common issues that are most likely to surface in a Proxmox cluster. As mentioned earlier in
this chapter, this is by no means a complete list of all the possible issues. If at all possible,
always hold off major Proxmox upgrades for a production cluster. Give it some time to
work out the bugs. This way, your cluster will have very little chance of going down due to
any unforeseen bugs.

Purchasing a Proxmox subscription is the best way to ensure that there are fewer bugs in
the repositories, since Proxmox Enterprise repositories go through an additional layer of
scrutiny and testing. For information on Proxmox subscriptions, refer to
https://www.proxmox.com/proxmox-ve/pricing.

The Proxmox forum is also a great place to ask for help or share issues with the community.
There are many forum users who are ready to provide their expertise. Visit the forum at
http://forum.proxmox.com.

https://www.proxmox.com/proxmox-ve/pricing
http://forum.proxmox.com

16
Rescuing Proxmox

Whether we want to accept it or not, a network environment is always at risk of something
going wrong. Even if we take out the hardware and software from the equation, there is
always the human factor. Sometimes all it takes is a small mistake that can snowball very
rapidly to something major. A well thought out disaster plan can go a long way to
combating a situation, or sometimes on the ball quick thinking can save the day.

As we approach the end of the book, in this concluding chapter we are going to see some
situations where things went wrong and what do to do when the same happens to you in
the virtual environment you are part of. Like Chapter 15, Proxmox Troubleshooting, these are
not all-inclusive scenarios. You may, or will, come across other situations that are not
covered in this chapter. As a good administrator, you can expand on this through your own
documentation, but we hope we were able to put together some critical situations that you
may face in your career and that the solutions provided here will prove extremely valuable.

This chapter is divided into the following categories of scenario:

Recovering from OS drive failure
Recovering from a quorum failure
Recovering from a node failure
Recovering from a network failure
Recovering from Ceph failure

Rescuing Proxmox Chapter 16

[434]

Recovering from OS drive failure
OS drive failure is one of the critical failures when a node becomes fully inaccessible. Since
Proxmox stores all cluster-related configuration files on Proxmox Cluster file system
(pmxcfs), no cluster data is lost even when the OS drive fails completely. Refer to Chapter
3, Proxmox under the Hood, to recap details on pmxcfs. There are mainly two types of OS
drive failure:

Physical drive failure
OS data corruption

Physical drive failure
This failure occurs when the physical drive itself becomes completely unusable or defective.
In this scenario, the only option is to replace the damaged drive with a new one and install
clean Proxmox VE on it. One way to prevent downtime due to physical drive failure is to
use two physical drives for the OS in mirror mode. During Proxmox installation, we can
select the Advanced option to create a ZFS mirror on two physical drives. This way when
one drive becomes physically damaged, it does not cause any downtime since there is a
second drive with all of the OS files. This same RAID-level redundancy can be achieved
using a RAID card and by creating Raid 1 on two physical drives.

OS data corruption
This failure occurs when no physical damage has occurred but critical files of the OS itself
become corrupted, or some portion of the OS is accidentally deleted. In some cases, this can
also occur due to an incomplete upgrade or due to the presence of bugs in the update or
patch. File partition corruption can also cause severe unrecoverable OS data corruption. In
most cases when there is a filesystem error or any data corruption, the OS boot process will
drop in the maintenance shell or we can manually enter into Proxmox rescue mode by
rebooting the node from Proxmox ISO CDROM and selecting Rescue Boot, as shown in the
following screenshot:

Rescuing Proxmox Chapter 16

[435]

Migrating VMs from a faulty node
Depending on the nature of the OS drive failure, the length of the downtime will vary. If the
fix takes more than a tolerable amount of downtime, then it may be necessary to start the
VMs previously served by the faulty node on different nodes in the cluster. When the VM
disk images are stored on a shared storage node, then we can simply move the VM
configuration file to a different node and turn them on. The following commands will move
KVM and LXC VMs from one node to another within pmxcfs:

mv /etc/pve/nodes/<faulty_node>/lxc/<lxc_id>.conf
/etc/pve/nodes/<second_node>/lxc/<lxc_id>.conf
mv /etc/pve/nodes/<faulty_node>/qemu-server/<kvm_id>.conf
/etc/pve/nodes/<second_node>/qemu-server/<kvm_id>.conf

If the VM disk images are stored locally on the same OS drive, the previous method,
however, will not work, because if the drive is physically damaged or corrupted, so will the
VM disk images be. In other cases, where the VM disk images are stored locally on the same
node but on different drives, the previous method will also not work since the VM disk
images will need to be moved or the drives will need to be mounted on a different node
first.

Rescuing Proxmox Chapter 16

[436]

Reinstalling Proxmox
If the Proxmox OS was not mirrored or if the OS is beyond repair, it may be necessary to
reinstall Proxmox on a new or reformatted OS drive. If the node was part of a cluster, then
after the OS reinstall, simply re-add the node into the cluster. If both IP address and
hostname are the same as before, it may be necessary to add the node forcefully with the -f
option in the pvecm add command. Reinstalling Proxmox and then re-adding to the cluster
may be a faster solution in most cases than trying to fix an OS-related issue, but each use
case will vary based on the environment and where disk images are stored.

Recovering from a quorum failure
There are various reason why a Proxmox cluster can lose a quorum. For the cluster to
operate correctly, a quorum must exist within the nodes. A quorum is established when the
majority of the nodes are online. If 51% of the nodes go offline for whatever reason, a
quorum will be lost, resulting in a cluster error. A Proxmox quorum relies on multicast. So
if multicast gets disabled in the switch, the cluster can also lose a quorum. A manual
misconfiguration in the cluster file can also cause loss of a quorum. When a quorum is lost,
the following error messages will appear in log files under /var/log/corosync:

......................
corosync[9999]: [QUORUM] Quorum provider: corosync_votequorum failed to
initialize.
corosync[9999]: [SERV] Service engine 'corosync_quorum' failed to load
for reason
 'configuration error: nodelist or quorum.expected_votes must be
configured!'
......................

The previous error may be because the hostname of the node could not be resolved. Adding
all the nodes' hostnames and IP addresses to /etc/hosts may help establish a quorum.
The following is the host's file content of our example node:

Rescuing Proxmox Chapter 16

[437]

If the quorum is lost due to manual editing of the cluster configuration file, then we need to
reverse the change by re-editing the /etc/pve/corosync.conf file or restoring it from a
recent backup. Note that after a quorum is lost, the pmxcfs will become read-only and so
will all the files in it, including corosync.conf. To be able to edit the file, we can run the
following command to temporarily establish a quorum:

pvecm expected 1

The previous command sets the total vote count to 1 and lets the cluster establish a quorum.
Always make sure you edit the local copy of the cluster file and that the content of this
configuration is the same on all nodes. Only then can a quorum be established. Any
misconfiguration will cause split-brain, causing the full loss of a quorum.

It is of utmost importance to avoid any manual configuration of the
corosync.conf file. If manual editing becomes necessary, then only
commit changes when fully capable of doing so. If unsure of how the
corosync.conf file works, it is best to avoid doing it yourself and seek
help from the Proxmox forum or paid support.

After restoring the content of corosync.conf with a working configuration, restart the
cluster using the following commands:

systemctl restart pve-cluster
systemctl restart corosync

If the quorum is lost or unable to be established due to a multicast error, then the first step
is to check if the multicast is properly configured or exists on the network. We can use the
following command format to check multicast between nodes:

omping -c 10000 -i 0.001 -F -q <node1_ip> <node2_ip>

If the previous test fails, that means multicast does not exist and the quorum is failing.

Rescuing Proxmox Chapter 16

[438]

Recovering from a node failure
A Proxmox node can physically fail due to hardware component failure such as the
motherboard, CPU, memory, power supply and so on, while the OS drive remains intact. In
such a scenario, we can simply move the OS drive to a different node and power up. The
new node does not need to be identical to the faulty one at all. Since the network interface
may be different, we only will need to ensure the network configuration is set for the proper
interface. Also, if the Proxmox OS has a paid subscription, the key will need to be reissued.
Contact the seller where the subscription was purchased from or Proxmox directly to get
the subscription key reissued.

The subscription key is bound to the hardware component, so the reissue of the key is
required to bind the subscription key to the new hardware component. It is important to
note that the CPU count will matter when moving the OS drive from one to another with a
paid subscription. A Proxmox subscription key purchased for one CPU count will not work
for multiple CPU nodes.

If the failed node had locally stored VM disk images on the same OS drive, the VM will just
power up when the new node comes online with the moved OS drive from the failed node.
If the disk images were stored locally on separate drives, then those drives will also need to
be moved to a new node, and mount points must be reconfigured before the VM can be
powered up.

Recovering from a network failure
The extent of network failure can span over multiple layers, causing interruption between
the Proxmox node and the user, or between the storage node and Proxmox nodes. The
failure can occur due to physical network interface failure or an accidental network cable
pull from nodes. The network failure can also occur due to heavy network traffic, which
may be caused by but not limited to running a backup task on the same network path. In
most production environments, server nodes usually contain more than one network
interface for redundancy to reduce the loss of network connectivity to a minimum. The
three most common scenarios for network connectivity interruptions are explained in the
following sections.

Rescuing Proxmox Chapter 16

[439]

Loss of connectivity between Proxmox nodes
In this scenario, network connectivity is only interrupted between Proxmox nodes in a
cluster. When over half of the Proxmox nodes in a cluster cannot communicate with each
other, a quorum cannot be established. If multiple nodes lose network connectivity
simultaneously, this usually indicates a network switch failure. This is a common scenario
when a Proxmox cluster is on a dedicated management interface. So a loss of this
connectivity only interrupts the quorum but not the VMs running on the nodes and users
accessing it. When a quorum is lost, VMs in respective nodes function properly but from the
GUI they may appear offline, including the nodes themselves, as shown in the following
screenshot:

In the previous screenshot, the cluster lost a quorum so while accessing the GUI from node
pmx-03, all other nodes appear offline even though they are running.

Loss of connectivity between Proxmox nodes
and users
In this scenario, when the connection between the user and Proxmox node is lost but the
connection between Proxmox nodes and storage is unaffected, then the VM continues to
run fine, except users cannot access the VMs. If a single interface is used for the Proxmox
management and Proxmox public-side traffic, then a loss of connectivity on this interface
will interrupt cluster communication and users will not be able to access their VMs running
on this node. This will also prevent any console access through SSH. If another interface is
used for shared storage and that interface did not lose connectivity, then the VM itself will
keep running without interruption. Restoring connectivity will resume all usual operation
of the node within moments.

Rescuing Proxmox Chapter 16

[440]

Another scenario when a node itself can lose network connectivity is the use of Open
vSwitch. In Proxmox 4.4, there was a situation when the node was updated and rebooted,
but the node could not start the network interface due to an updated Open vSwitch
package. The network service needed to be manually restarted. If the node is in a remote
location without immediate access, and if there were other network interfaces in the node
configured, that were not Open vSwitch-dependent, such as InfiniBand or standard Linux
bridging on a different subnet, then we could still access the node from another node
through a different network interface.

Loss of connectivity between Proxmox and
storage nodes
If the network connectivity between Proxmox nodes and storage nodes is lost, users will
experience a frozen state in their VMs. If the connection is stored within a reasonable
amount of time, the VM will resume operation. If the connection is not restored after an
extended amount of time, the VM will need to be restarted after the connection is restored.
The reason VMs can continue operating after the connection is restored is that VM data
remains in the memory, which is not directly affected by the storage node.

Usually, network connectivity affecting multiple nodes can be traced down to a physical
network switch, while a single node network connectivity loss is due to the node itself or a
single network cable.

Recovering from Ceph failure
Ceph is a very resilient, highly available storage system. Once a Ceph cluster is configured,
for the most part, it can run maintenance free. In most cases, lack of knowledge on how
Ceph works leads to major issues, causing cluster-side interference. In this section, we will
highlight some of the most common issues and how to combat them in a Ceph cluster.

Best practices for a healthy Ceph cluster
The following are a few best practices to keep a Ceph cluster running healthy:

If possible, keep all settings to default for a healthy cluster.
Use Ceph pool only to implement a different OSD type policy and not for
multitenancy, such as one pool for SSDs and another for HDDs.

Rescuing Proxmox Chapter 16

[441]

Do not make frequent Ceph configuration changes. It adds extra workload on the
cluster OSDs, reducing the life of HDDs. After each change, let the cluster
rebalance data before making new changes.
Always keep in mind the core count of Ceph nodes when adjusting Ceph threads.
Do not let the number of threads become more than the core count.
In a small Ceph cluster, SSDs will increase write performance. In a large cluster, a
higher OSD count will increase performance.
Do not use desktop class hard drives as OSDs in a small cluster.
Reduce backfill and recovery threads to a minimum to continue recovery without
hurting client request performance.

Stuck inconsistent PGs in Ceph
Over time, Ceph PGs may become inconsistent. The following steps will help us to find the
inconsistent PG and repair it:

Get PG name:1.

 # ceph health detail

Run this command to repair the PG:2.

 # ceph pg repair

Stuck inactive incomplete PGs in Ceph
If any PG is stuck due to OSD or node failure and becomes unhealthy, resulting in the
cluster becoming inaccessible due to a blocked request for greater than 32 secs, try the
following:

Set noout to prevent data rebalancing:1.

 #ceph osd set noout

Query the PG to see which are the probing OSDs:2.

 # ceph pg xx.x query

Rescuing Proxmox Chapter 16

[442]

Go to each probing OSD and delete the header folder here:3.

 var/lib/ceph/osd/ceph-X/current/xx.x_head/

Restart all OSDs. 4.

Run a PG query to see the PG does not exist. It should show something like a5.
NOENT message.

Force create a PG:6.

 # ceph pg force_pg_create x.xx

Restart PG OSDs.7.

Warning !!
Follow this only if all attempts to restore the placement group or PG have
failed. This will cause data loss.

Error while moving a Ceph journal to another
drive
When a Ceph journal is on SSD, it provides the fastest performance in a small Ceph cluster
with less than 50 OSDs. If a cluster was created initially with OSDs co-located on the same
spinner HDD, then it needs to be moved to SSD for journaling. There are a few steps that
must be followed to ensure a Ceph journal can be written onto a new drive. When using
SSD as a journaling drive, always ensure not to overload it with too much journals for
multiple OSDs. As a rule of thumb, one SSD should be used for every five OSDs. We can
allocate multiple partitions on an SSD to store journals for multiple OSDs. If proper steps
are not followed to create a journaling drive, the respective OSDs will not be able to start.
The following steps will move an OSD journal to another drive:

Format the SSD and create a number of partitions based on the number of OSD1.
journals needing to be stored.
Stop the OSD using this command: 2.

 # service ceph stop osd.<id>

Rescuing Proxmox Chapter 16

[443]

Flush the journal for the OSD: 3.

 # ceph-osd -i <id> --flush-journal

Create Symlink: 4.

 # rm /var/lib/ceph/osd/osd.<id>/journal
 # ln -s /dev/sdX /var/lib/ceph/osd/osd.<id>/journal

Create a new journal:5.

 # ceph-osd -i <id> --mkjournal

Start the OSD:6.

 # service ceph stop osd.<id>

As of Proxmox 5.5, we can start/stop OSDs from the GUI, but we cannot move the journal
drive. However, when creating new OSDs through the GUI, we can manually select which
drive we want to use as the journaling drive, as shown in the following screenshot:

Rescuing Proxmox Chapter 16

[444]

Ceph node running out of resources during
recovery
On day-to-day operations, a Ceph node uses very little resources such as CPU and memory.
But during a cluster recovery, Ceph redistributes a large amount of data between OSDs,
which uses up a large portion of the node resources. If a node is constantly running out of
resources during recovery, check whether there are any VMs running on that node. Those
VMs will need to be powered off or migrated to another node until the rebalancing finishes.
If this is not the case, then check the available resources of the node. It may be that the node
simply does not have enough resources to keep up with the Ceph recovery. Another
common reason for running out of resources is that Ceph may be configured with higher
performance values, such as a number of threads allocated for recovery or maximum
backfills allowed. A great feature of Ceph is lots of the configuration can be applied during
runtime, which gets applied immediately. The following are some of the configuration
options that need to be checked if nodes are running out of resources during recovery:

To check the recovery values of an OSD, run this command format:

ceph daemon osd.0 config show | grep recovery

This command will show all the OSD recovery-related options currently set for OSDs, as
shown in the following screenshot:

Rescuing Proxmox Chapter 16

[445]

From the previous screenshot, we can see that currently the value for
osd_recovery_max_active is set to 3. This means the OSD recovery will use three
threads during recovery. If the Ceph node is struggling, we need to drop the value to one
thread using the following command:

ceph tell osd.* injectargs '--osd-recovery-max-active 1'

The previous command will change the recovery thread to 1 for all OSDs because we have
added a wildcard as the OSD ID instead of specifying one particular OSD. The injectargs
syntax changes values in real time without needing to restart any OSD or node.

If we want to check the value currently set for max backfills, we can enter a similar
command as follows:

ceph daemon osd.0 config show | grep backfills

For our example cluster, the command shows the backfills set to 6, as shown in the
following screenshot:

As we can see from the previous screenshot, the backfills are set to a value of 6. This may be
too high for a smaller node. This value should be set to 1 if the node is running out of
resources during recovery. We are going to change the value using the following command
we already have seen for the recovery thread:

ceph tell osd.* injectargs '--osd-max-backfills 1'

It is important to note here that besides a node running out of resources, there can also be a
network bottleneck due to higher recovery values, such as an extreme slowdown in
network connectivity to the point where users will not be able to access their VMs. In such a
scenario, these recovery values will also prove very helpful. Lower recovery values ensure
that user requests do not get interrupted, yet recovery takes place at a slower pace. If user
connectivity is not a priority, for example overnight, we can inject new higher values to
speed up recovery, then change them to a lower value before the working day starts.

Rescuing Proxmox Chapter 16

[446]

Summary
In this chapter, we got to see some of the most common scenarios when things can go
wrong and some steps to recover from them. By no means are these the only issues that can
bring a cluster down. This list should be expanded through proper documentation as new
issues surface and solutions are found.

No amount of reading or study can equal hands-on experience with Proxmox. You may
already be a professional in the virtualization field, or you may be just starting out on a
networking career and looking for a way to stand out from the crowd, but hopefully, this
book will push you in the right direction. Besides the official site and forum, you can also
reach out to the author directly to ask questions or to have a discussion, through the author
maintained forum at http:/ ​/​www. ​masteringproxmox. ​com/ ​.

http://www.masteringproxmox.com/
http://www.masteringproxmox.com/
http://www.masteringproxmox.com/
http://www.masteringproxmox.com/
http://www.masteringproxmox.com/
http://www.masteringproxmox.com/
http://www.masteringproxmox.com/
http://www.masteringproxmox.com/
http://www.masteringproxmox.com/
http://www.masteringproxmox.com/

Index

.

.qcow2 images 102

.raw image type 102

.vmdk image type 103

A
access control lists (ACLs) 193
advanced configuration options
 reference link 205
Asetek
 URL 351

B
backup compression levels
 about 372
 GZIP 373
 LZO 372
 none 372
backup configuration file
 about 394
 bwlimit option 394
 exclude-path option 396
 lockwait option 395
 mailto option 395
 pigz option 396
 script option 395
 stdexcludes option 395
 stopwait option 395
backup options
 about 371
 full backup 371
 snapshots 373
backup storage
 configuring 374, 376
 Show VM configuration 376
backup/restore, issues

 about 427
 Proxmox VM locking issue 427
 storage space issue 429
 time consuming issue 429
 virtual disks backup issue 428
 virtual machines stopping issue 428
BIOS power-on feature 295
bonding modes
 802.3ad/Mode 4 230
 about 229
 active-backup/Mode 1 229
 balance-alb/Mode 6 231
 balance-rr 229
 balance-tlb/Mode 5 230
 balance-xor/Mode 2 230
 broadcast/Mode 3 230
 policies 229
bridge options
 about 223
 bridge_fd 223
 bridge_stp 223
 reference link 224
built-in monitoring
 about 310
 Datacenter Status 310, 312
 Node Status 312, 315
Bulk Stop 405
bwlimit option 394

C
caching
 direct sync 111
 no cache 111
 virtual disk image 110
 write back 111
 write back (unsafe) 111
 write through 111

[448]

Calamari
 reference link 337
 used, for monitoring Ceph cluster 337
central storage management 98
Ceph cluster
 best practices 440, 441
 Ceph, installing on Proxmox 137
 installing 136
 monitoring, with Calamari 337
 monitoring, with Ceph dashboard 337
 monitoring, with Kraken dash 337
 monitoring, with Proxmox GUI 335
Ceph components
 about 129
 maps 129
 MDS 131
 monitor 130
 OSD 131
 PG 132
 physical node, using as cluster member 129
 pools 134
 summarizing 135
Ceph dashboard
 reference link 337
 used, for monitoring Ceph cluster 337
Ceph failure
 Ceph cluster, best practices 440, 441
 inactive incomplete PGs, finding 441, 442
 inconsistent PGs, finding 441
 journal, migration error 442, 443
 node, running out of resources during recovery

444, 445
 recovering 440
Ceph FileSystem (CephFS) 103
Ceph monitor (mon)
 about 130
 reference link 130
Ceph Public LAN 136
Ceph RBD
 about 91, 123
 reference link 123
Ceph releases
 reference link 139
Ceph Sync LAN 136
Ceph

 command list 151
 installing 138
 installing, on Proxmox 137
 Proxmox node, preparing 137
 URL 128
cloning
 used, for creating VM 170
cloud computing
 reference link 252
cluster map 129
cluster, issues
 about 412
 filesystem, read-only mode issues 414
 kernel panic issue 413
 out of quorum issue 414
 Proxmox GUI responding issue 415
 RRD graphs displaying issue 415
 shutdown issue 413, 414
 visibility error 413
 VM responding issues 415
command-line interface (CLI)
 about 67
 host-specific firewall, configuring via 284
 Proxmox, updating via 401
 used, for accessing container shell 208
 used, for adjusting resources 203
 used, for backup 385
 used, for restore 386
 VM, unlocking after backup error 388
 VM-specific firewall, configuring via 287
commercial storage option 126
configuration files
 Ceph configuration files 91
 cluster configuration file 72
 cluster log file 90
 dissecting 71
 firewall configuration file 91
 interface 77
 KVM configuration file, arguments 86
 KVM virtual machine configuration file 81, 83
 logging 73
 LXC container configuration file 87
 member nodes 89
 nodelist 73
 password configuration file 81

[449]

 quorum 74
 storage systems 78
 totem 75
 users 80
 version configuration file 88
 virtual machine list file 90
container shell
 accessing, through CLI 208
container templates 187
Controlled Replication Under Scalable Hashing

(CRUSH) map
 about 130
 reference link 130
CoolIT system
 URL 351
Corosync Cluster Engine
 URL 68
CPU and memory
 Hyper-threading enable, versus disable 346
 node resources, balancing 347
 single socket, versus multi-socket 346
 sizing 345
 VM resources 346
CPU tab, KVM
 cores 166
 NUMA, enabling 166
 sockets 165
 type 166
CPU tab, LXC container
 cores 194

D
data center-specific firewall, through CLI
 [ALIASES] 276
 [group (name)] 277
 [IPSET (name)] 277
 [OPTIONS] 276
 [RULES] 277
 configuring 275
data center-specific firewall, through GUI
 aliases, creating 272
 configuring 266
 IPSet, creating 269, 271
 rules, creating 267
data center-specific firewall

 aliases, creating 274
 configuring 266
data
 displaying, with graph 323, 325
Datacenter menu
 about 33
 backup 36
 firewall 42
 High Availability (HA) 41
 options 35
 permissions 37, 39, 40, 41
 search 34
 storage 36
 summary 35
 support 42
Datacenter Status
 about 310, 312
 Guests section 311
 Health section 311
 Nodes section 312
 Resources section 312
Direct Attached Storage (DAS) 93
direct modification
 used, for adjusting resources 205
directory structure 69, 71
disk health notification
 configuring 325
 graphs, creating in GUI 330
 smart monitor tools, installing 326
 trigger, creating in GUI 328
 Zabbix agent, configuring 326
 Zabbix item, creating in GUI 327
distributed denial-of-service (DDoS) 280
DNS search domain 61
DNS server address 61

E
Elastic
 URL 290
exclude-path option 396
external network virtualization
 about 212
 reference link 212

[450]

F
fencing 295
Fencing menu, Proxmox HA 302
files
 configuring, of Proxmox VE firewall 265
firewall, issues
 about 430
 applying issue 430, 431
 filtering for VM issue 431, 432
forwarding delay (FD) 223
full backup
 about 371
 compression levels 372
 configuring 377
 manual backup, creating 381
 modes 371

G
General tab, KVM
 help 156
 name 156
 node 156
 VM ID 156
General tab, LXC container
 CT ID 190
 Hostname 190
 node 190
 resource pool 191
 unprivileged container 190
GlusterFS
 about 123
 references 124
 values, used 125
GParted
 reference link 105
GPU passthrough
 configuring 177
graph
 used, for displaying data 323, 325
graphical user interface (GUI)
 about 7
 Proxmox, updating via 399
 replication task, creating via 390
 used, for resources adjusting 201

Green Revolution Cooling
 about 350
 URL 350
Groups menu, Proxmox HA
 about 299
 ID 300
 node 300
 nofailback checkbox 300
 restricted checkbox 300
grub2 update issue
 recovering from 403

H
HA menu
 Resources menu 297
 status 297
HA setup
 BIOS power-on feature 295
 fencing 295
 requisites 294
 shared storage 295
 three nodes 294
Hard Disk tab, KVM
 cache 163
 device ID 159
 discard 163
 disk image bus type 159
 disk size (GB) 161
 format 161
 IO thread 164
 no backup option 163
 storage 161
hardware virtualization extensions (HWE) 154
hash policies
 about 233
 layer 2 hash policy 233
 layer 2+3 hash policy 233
 layer 3+4 hash policy 233
High Availability (HA)
 about 41, 292, 293, 415
 in Proxmox 293
 working, in Proxmox 294
host-specific firewall
 configuring 277
 configuring, through CLI 284

[451]

 options 279
 rules, creating 278
hotplug
 preparing for 179
 used, for configuring VMs 182
hypervisor 5

I
IGMP snooping 236
image formats
 .qcow2 images 101, 102
 .raw image type 102
 .raw image types 101
 .vmdk image type 101, 103
 supporting 100
Infrastructure as a Service (IaaS) 252
input output per second (IOPS) 108
internal network virtualization
 about 212
 reference link 212
Internet Small Computer Systems Interface (iSCSI)
 about 116
 reference link 116
Internet Usage Policy 361
IntPort 244
ISO image
 used, for creating KVM 155

K
Kernel-based Virtual Machine (KVM)
 about 8, 153
 CD/DVD tab 158
 CPU tab 164
 creating 154
 creating, with ISO image 155
 exploring 154
 General tab 156
 Hard Disk tab 159
 Memory tab 167
 migrating 184
 Network tab 168
 OS tab 157
 reference link 154, 156
KernelCare
 about 406

 reference link 406
 URL, for installing 406
key components, production level
 budget 344
 current load, versus future growth 344
 hardware inventory, tracking 345
 hardware selection 345
 redundancy 342
 simplicity 344
 stable and scalable hardware 341
kilobytes per second (KBps) 394
Kraken dash
 reference link 337
 used, for monitoring Ceph cluster 337
KVM virtual machine, issues
 about 423
 audio issue 425
 data synchronizing issue 425
 hanging issue 423
 qemu-img command conversion issue 424, 425
 VirtIO virtual disk availability issue 426
 Windows 7 VM rebooting issue 424

L
Link Aggregation (LAG) 229
Link Aggregation Control Protocol (LACP)
 about 229
 reference link 232
Linux container (LXC)
 about 8
 accessing 206
 advantages 187
 Confirm tab 199
 container shell, accessing through CLI 208
 CPU tab 194
 creating 189
 DNS tab 198
 General tab 190
 managing 199
 Memory tab 195
 migrating 205
 Network tab 195
 noVNC console 207
 OpenVZ, converting to 209
 resources, adjusting CLI used 203

[452]

 resources, adjusting GUI used 201
 Root Disk tab 192
 Template tab 191
 URL 87
liquid cooling
 3M Novec immersion 350
 about 349
 oil immersion 350
live migration
 about 94
 of virtual machine 94
local storage, versus shared storage
 about 94
 central storage management 98
 centralized backup 97
 multilevel data tiering 98
 multinode storage space, expanding 97
 virtual machine, live migration 94
local storage
 versus shared storage 100
lockwait option 395
Logical Volume Management (LVM)
 about 117
 reference link 117
LSI driver
 downloading 410
 Supermicro BIOS, updating 411
 updating 410
LXC container, issues
 about 426
 noVNC console displaying issue 426
 Proxmox node hanging issue 426
LXC virtual machines 186

M
mailto option 395
Management Information Base (MIB)
 about 332
 reference link 332
manual backup
 about 381
 creating 381
maps, Ceph
 about 129
 cluster map 129

 CRUSH map 130
Master Boot Record (MBR) 403
Media Access Control (MAC) 215
metadata server (MDS)
 about 131
 reference link 132
MobaXterm
 URL 306
modes, full backup
 snapshot 371
 stop 372
 suspend 372
monitoring 309
multi-tenant cloud service provider
 virtual infrastructure 357
multi-tenant virtual environment
 about 252
 diagram 253
multi-tier storage cluster
 with Proxmox cluster 355
multicast
 about 236
 configuring, on Netgear 237
multilevel data tiering 98
multinode storage space
 expanding 97

N
Neighbor Discovery Protocol (NDP) 281
nested virtual environment
 for a software development company 359
Network Address Translation/Translator (NAT)
 about 228
 adding 228
network bonding
 about 229
 bonding interface, adding 231
network connectivity, issues
 about 421
 IPv6 firewall rules issue 423
 node adding issue 423
 patch port working issue 422
 performance issue 422
 Realtek connectivity issue 421
network failure

[453]

 connectivity loss, between Proxmox and storage
nodes 440

 connectivity loss, between Proxmox nodes and
users 439, 440

 Proxmox nodes, connectivity loss between 439
 recovering 438
Network File System (NFS) 118
network interface card (NIC) 46
Network tab, KVM
 bridged mode 168
 disconnect 170
 firewall 169
 MAC address 169
 model 169
 multiqueues 170
 NAT mode 169
 no network device 169
 rate limit 169
Network tab, LXC container
 bridge 197
 firewall 197
 IPv4/IPv6 197
 MAC address 196
 name 196
 rate limit 197
 VLAN tag 197
network virtualization
 external network virtualization 212
 internal network virtualization 212
networking components
 bridge options 223
 in Proxmox 215
 multicast 236
 Network Address Translation/Translator (NAT)

228

 network bonding 229
 virtual bridge 217
 Virtual LAN (VLAN) 224
 Virtual Network Interface Card (vNIC) 215
node failure
 recovering 438
Node Status 312, 315
node-specific menus
 about 42
 ceph 50

 disks 49
 firewall 49
 search 42
 shell 44
 subscription 51
 summary 43
 system 45, 46, 47
 task history 51
 updates 48
non-uniform memory access (NUMA) 166
noncommercial storage option 126
noVNC console 207

O
Object Identifier (OID)
 about 331
 reference link 331
object storage daemon (OSD)
 about 129, 131
 journal 131
offline migration 94
Open Systems Interconnection (OSI)
 about 224
 reference link 224
Open Virtual Machine Firmware (OVMF) 178
Open vSwitch commands
 reference link 246
Open vSwitch
 about 239
 bond, adding 242
 bridge, adding 241
 configurations, requisites 246
 features 240
 for CLI 245
 IntPort, adding 244
 practicing 246
 reference link 240
 solution 247
 URL 7
OpenVZ
 converting, to LXC 209
options, host-specific firewall
 enable a firewall 279
 log_level_in/out 283
 NDP 281

[454]

 nf_conntrack_max 281
 nf_conntrack_tcp_timeout_established 282
 smurf_log_level 284
 SMURFS filter 280
 TCP flags filter 280
 tcp_flags_log_level 283
options, VM-specific firewall
 about 286
 enable DHCP 286
 input/output policy 287
 MAC filter 286
OS data corruption 434
OS drive failure
 OS data corruption 434
 physical drive failure 434
 Proxmox, reinstalling 436
 recovering from 434
 VMs, migrating from faulty node 435

P
packet sniffing 254
PCI passthrough
 configuring 175
pct restore command
 options 387
pfsense
 URL 250
physical drive failure 434
physical network
 about 214
 versus virtual networks 212
physical node
 used, as cluster member 129
pigz option 396
placement group (PG)
 about 129, 132, 336
 reference link 134, 336
pools 134
production level
 defining 341
 key components 341
Proxmox Cluster file system (pmxcfs)
 about 68, 96, 434
 URL 68
Proxmox cluster

 creating 24, 25, 26, 27
 used, for multi-tier storage cluster 355
Proxmox features
 about 6
 built-in firewall 6
 culture 9
 free 6
 graphical user interface 7
 KVM virtual machines 8
 linux containers 8
 Open vSwitch 7
 storage plugins 8
Proxmox forum
 URL 405
Proxmox GUI
 cluster tree view 31
 Datacenter menu 33
 exploring 28
 Folder View 31
 GUI menu system 29
 KVM menu 52, 54, 57, 59
 LXC Container menu 60, 61, 62, 63
 node-specific menus 42
 Pool menu 63, 66
 Pool View 33
 Server View 31
 Storage View 32
 used, for monitoring Ceph cluster 335
Proxmox HA configuration
 testing 303, 305
Proxmox HA simulator
 about 306
 configuring 306, 307
Proxmox HA
 configuring 296
 Fencing menu 302
 Groups menu 299
 HA menu 296
Proxmox node, issues
 about 408
 getpwnam error 412
 GUI logging issue 412
 installation stuck issue 408, 409
 installation, in endless loop issue 409
 LSI driver, booting error 410

[455]

 rejoining issue 409
 upgrading issue 411, 412
Proxmox nodes
 connectivity loss between 439
Proxmox roadmap
 reference link 405
Proxmox VE Cluster Manager (pvecm) 24
Proxmox VE Enterprise repository
 about 20, 21
 last checked 22
 next due date 22
 server ID 22
 sockets 22
 status 22
 subscription key 21
 type 21
Proxmox VE firewall
 about 257
 components 257
 files, configuring 265
 IPSet 260
 macros 263
 protocols 262
 pve-firewall service 264
 pvefw-logger service 264
 rules 261
 security groups 259
 zones 257
Proxmox VE No-Subscription repository 22
Proxmox Virtual Environment (VE) 5
Proxmox
 added features 398
 advanced installation option 10, 11, 12, 13, 14,

15, 16
 Ceph, connecting to 149
 Ceph, installing 137
 GUI, used for creating Ceph 148
 GUI, used for creating monitors 142
 GUI, used for creating OSDs 143
 GUI, used for managing Ceph pool 146
 installation 9, 10
 installation, debugging 17, 18
 networking components 215
 Proxmox VE No-Subscription repository 22
 Proxmox VE Test repository 23

 rebooting, after updates 404
 reference link 203
 reinstalling 436
 repositories 18, 19
 storage types 115
 subscription 18, 19
 Suricata, limitations 290
 updates 398
 updates, applying without reboot 406
 updating, through CLI 401
 updating, through GUI 399
 upgrade, versus dist-upgrade 402
 URL 9
 URL, for installing 409
 URL, for Subscription Plans 23

Q
QEMU Monitor Protocol (QMP) 57
qmrestore command
 options 387
quorum 294
quorum failure
 recovering 437
 recovering from 436

R
RADOS Block Device (RBD) 9, 123
RAID types 120
real-world scenarios
 about 351
 academic institution 352, 353, 354
 multi-floor office virtual infrastructure with, virtual

desktops 363
 multi-tier storage cluster, with Proxmox cluster

355

 nested virtual environment, for software
development company 359

 virtual infrastructure, for geological survey
organization 367

 virtual infrastructure, for hotel industry 365
 virtual infrastructure, for multi-tenant cloud service

provider 357
 virtual infrastructure, for public library 361
Realtek
 URL 421

[456]

redundancy
 about 342
 HVAC level redundancy 343
 network-level redundancy 343
 node-level redundancy 342
 storage level redundancy 343
 utility level redundancy 343
Redundant Ring Protocol (RRP) 75
Reliable Autonomic Distributed Object Store

(RADOS) 128
Remote Desktop Protocol (RDP) 254
repository
 reference link 412
resources
 adjusting, CLI used 203
 adjusting, direct modification used 205
 adjusting, GUI used 201
Root Disk tab, LXC container
 ACLs 193
 enable quota 193
 storage 193

S
schedule, for backup
 compression 380
 creating 378
 day of week 379
 email notification 380
 enable 381
 mode 380
 node 379
 selection mode 380
 send email to 380
 start time 379
 storage 379
script option 395
service-level agreement (SLA) 126
shared storage
 about 295
 versus local storage 100
Simple Network Management Protocol (SNMP)
 about 330
 configuring, in Proxmox 330
 device, adding in Zabbix 334
 Management Information Base (MIB) 332

 Object Identifier (OID) 331
 reference link 330
 version 1 332
 version 2 332
 version 3 332
Single Ring Protocol (SRP) 75
smart monitor attribute codes
 reference link 328
snapshots
 about 373
 creating 382, 383
sound device
 configuring 175
SPICE (Simple Protocol for Independent

Computing Environment) console
 about 254
 URL 54
Stateless Auto Configuration (SLAAC)
 about 197
 reference link 197
stdexcludes option 395
stopwait option 395
storage types, Proxmox
 about 115
 Ceph RBD 123
 directory 115
 GlusterFS 123
 iSCSI 116
 LVM 117
 NFS 118
 ZFS 119
storage, issues
 about 416
 block device issue 417
 CephFS storage displaying issue 420
 damaged LVM deleting issue 416
 fstrim command issue 418
 iSCSI target reading issue 417
 leftover NFS shares deleting issue 416
 mode session exit code 21 errors 417
 NFS mounting issue 416
 OSDs displaying issue 417
 pveceph configuration initializing error 419
 RBD connection error 418
 type modifying issue 418, 419

[457]

 VM clones parsing issue 420
 working slow issue 420
storages 355
subscription change
 updating 404
Supermicro BIOS firmware
 about 411
 reference link 411
Suricata IDS/IPS
 configuring 288
 installing 288
 integrating 287
 limitations, in Proxmox 290
 reference link 289
Suricata
 about 287
 URL 288

T
TCP flags
 about 280
 functions 280
template
 used, for creating VMs 172
triggers
 reference link 322

U
Unified Extensible Firmware Interface (UEFI) 178
upgrade
 versus dist-upgrade 402

V
VirtIO driver ISO
 reference link 419
 URL, for downloading 160, 419, 422
VirtIO drivers
 for Windows VMs 112
 installing 112
 installing, after Windows installation 115
 reference link 112
VirtIO interface driver
 URL, for downloading on Windows 216
virtual bridge 217
virtual bridge, through CLI

 adding 222
virtual bridge, through GUI
 adding 218
 Bridge ports 220
 IP information 219
 name 219
 VLAN-aware 220
Virtual Ceph
 for training 136
virtual desktops
 used, for multi-floor office virtual infrastructure

363

virtual device types 104
virtual disk image
 about 100
 caching 110
 device types 104
 managing 104
 moving 106
 resizing 105
 supported image formats 100
 throttling 108
 VirtIO drivers, for Windows VMs 112
virtual infrastructure
 for geological survey organization 367
 for hotel industry 365
 for public library 361
Virtual LAN (VLAN)
 about 224
 adding 225
virtual machine (VM)
 aborting issue 429
 advanced configuration options 174
 cloning modes 174
 configuring, with hotplug 182
 creating, by cloning 170
 creating, from template 172
 disks/vNICs, hotplugging 183
 GPU passthrough, configuring 177
 hotplug, preparing for 179
 live migration 94
 memory, hotplugging 182
 migrating, from faulty node 435
 PCI passthrough, configuring 175
 restoring 383, 385

 sound device, configuring 175
 target node 174
 vCPUs, hotplugging 182
virtual machine replication tasks
 creating, through CLI 392
 enabled 391
 rate limit (MB/s) 391
 replication task, creating via 392
 schedule 391
 target 391
virtual machine replication
 about 388, 389
 creating, through GUI 390
 process 393
Virtual Network Computing (VNC) 254
Virtual Network Interface Card (vNIC)
 about 46, 215
 adding 216
 removing 216
 URL, for downloading on Mac OS 216
virtual networks
 about 214
 academic institution sample 251
 exploring 212
 multi-tenant environment sample 249
 sample 248
 small-scale Proxmox cluster sample 248
 versus physical network 212
virtualization 5
VLAN, in IEEE 802.1q standard
 reference link 224
VM-specific firewall
 aliases, creating 285
 configuring 285
 configuring, through CLI 287
 IPSets, creating 285

 rules, creating 285
VNC/SPICE console, issues
 about 430
 mouse pointer sharing issue 430
 remote viewer connection issue 430
vzdump options 385

W
Windows machines, migration
 reference link 423
Windows VMs
 VirtIO drivers 112

Z
Zabbix 3.0 server
 reference link 317
Zabbix appliances
 URL, for downloading 316
Zabbix
 about 315
 as monitoring solution 315
 configuring 318
 data, displaying with graph 323, 325
 disk health notification, configuring 325
 host, configuring to monitor 319, 321, 322
 installing 316, 318
 SNMP device, adding in 334
 URL 316
ZFS
 about 119
 RAID types, supporting 119
 reference link 14, 119
zones, Proxmox VE firewall
 datacenter zone 257
 host zone 257
 VM zone 257

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Understanding Proxmox VE and Advanced Installation
	Understanding Proxmox features
	It is free!
	Built-in firewall
	Open vSwitch
	The graphical user interface
	KVM virtual machines
	Linux containers, or LXC
	Storage plugins
	Vibrant culture

	The basic installation of Proxmox
	The advanced installation option
	Debugging the Proxmox installation
	Proxmox subscription and repositories
	Proxmox VE Enterprise repository
	Type
	Subscription key
	Status
	Server ID
	Sockets
	Last checked
	Next due date

	Proxmox VE No-Subscription repository
	Proxmox VE Test repository

	Summary

	Chapter 2: Creating a Cluster and Exploring the Proxmox GUI
	Creating a Proxmox cluster
	Exploring the Proxmox GUI
	The GUI menu system
	Cluster tree view
	Server View
	Folder View
	Storage View
	Pool View
	The Datacenter menu
	Datacenter | Search
	Datacenter | Summary
	Datacenter | Options
	Datacenter | Storage
	Datacenter | Backup
	Datacenter | Permissions
	Datacenter | Permissions | Users
	Datacenter | Permissions | Groups
	Datacenter | Permissions | Pools
	Datacenter | Permissions | Roles
	Datacenter | Permissions | Authentication

	Datacenter | HA
	Datacenter | Firewall
	Datacenter | Support

	Node-specific menus
	Node | Search
	Node | Summary
	Node | Shell
	Node | System
	Node | Network
	Node | DNS
	Node | Time
	Node | Syslog

	Node | Updates
	Node | Firewall
	Node | Disks
	Node | Ceph
	Node | Task History
	Node | Subscription

	KVM menu
	KVM VM | Summary
	KVM | Console
	KVM | Hardware
	KVM | Options
	KVM VM | Task History
	KVM | Monitor
	KVM | Backup
	KVM VM | Snapshot
	KVM | Firewall
	KVM | Permissions

	LXC container menu
	LXC container | Summary
	LXC container | Resources
	LXC container | Network
	LXC container | DNS
	LXC container | Options
	LXC container | Task History
	LXC container | Backup
	LXC container | Snapshots
	LXC container | Firewall
	LXC container | Permissions

	Pool menu
	Pool | Summary
	Pool | Members
	Pool | Permissions

	Summary

	Chapter 3: Proxmox under the Hood
	The Proxmox cluster file system
	Proxmox directory structure
	Dissecting the configuration files
	The cluster configuration file
	logging { }
	nodelist { }
	quorum { }
	totem { }
	interface { }

	Storage configuration file
	User configuration files
	The password configuration file
	KVM virtual machine configuration file
	Arguments in the KVM configuration file
	LXC container configuration file
	Version configuration file
	Member nodes
	Virtual machine list file
	The cluster log file
	Ceph configuration files
	Firewall configuration file

	Summary

	Chapter 4: Storage Systems
	Local storage versus shared storage
	Live migration of a virtual machine
	Seamless expansion of multinode storage space
	Centralized backup
	Multilevel data tiering
	Central storage management

	Local and shared storage comparison
	A virtual disk image
	Supported image formats
	The .qcow2 images
	The .raw image type
	The .vmdk image type

	Virtual device types
	Managing disk images
	Resizing a virtual disk image
	Moving a virtual disk image
	Throttling a virtual disk image
	Caching a virtual disk image

	VirtIO bus type for Windows VMs
	Installing VirtIO drivers during Windows installation
	Installing VirtIO drivers after Windows installation

	Storage types in Proxmox
	Directory
	iSCSI
	Logical Volume Management
	NFS
	ZFS
	Ceph RBD
	GlusterFS

	Noncommercial/commercial storage options
	Summary

	Chapter 5: Installing and Configuring Ceph
	Ceph components
	A physical node as cluster member
	Maps
	A cluster map
	A CRUSH map

	Monitor
	OSD
	OSD journal

	Metadata server
	PG
	Pools
	Ceph components summary

	Virtual Ceph for training
	Installing a Ceph cluster
	Installing Ceph on Proxmox
	Preparing a Proxmox node for Ceph
	Installing Ceph
	Creating mons from the Proxmox GUI
	Creating OSDs from Proxmox GUI
	Managing a Ceph pool using Proxmox GUI
	Creating a Ceph pool using Proxmox GUI
	Connecting Ceph to Proxmox
	Ceph command list

	Summary

	Chapter 6: KVM Virtual Machines
	Exploring KVM
	Creating a KVM
	Creating a KVM using an ISO image
	General tab
	Node
	VM ID
	Name
	Resource Pool
	Help

	The OS tab
	The CD/DVD tab
	The Hard Disk tab
	Bus/Device
	Storage
	Disk size (GB)
	Format
	Cache
	No backup
	Discard
	IO thread

	The CPU tab
	Sockets
	Cores
	Enabling NUMA
	Type

	The Memory tab
	The Network tab
	Bridged mode
	Firewall
	NAT mode
	No network device
	Model
	MAC address
	Rate limit (MB/s)
	Multiqueues
	Disconnect

	Creating VM by cloning
	Creating VMs from a template
	Target node
	Mode

	Advanced configuration options for VMs
	Configuring a sound device
	Configuring PCI passthrough
	Configuring GPU passthrough
	Preparing for hotplug
	Configuring VMs with hotplug
	Hotplugging vCPUs
	Hotplugging memory
	Hotplugging disks/vNICs

	Migrating KVM virtual machines
	Summary

	Chapter 7: LXC Virtual Machines
	Exploring LXC virtual machines
	Understanding container templates
	Creating an LXC container
	General tab
	Node
	CT ID
	Hostname
	Unprivileged container
	Resource Pool

	The Template tab
	The Root Disk tab
	Storage
	ACLs
	Enable quota

	The CPU tab
	Cores

	The Memory tab
	The Network tab
	Name
	MAC address
	Bridge
	The VLAN Tag
	Rate limit
	Firewall
	IPv4/IPv6

	The DNS tab
	The Confirm tab

	Managing an LXC container
	Adjusting resources using the GUI
	Adjusting resources using the CLI
	Adjusting resources using direct modification

	Migrating an LXC container
	Accessing an LXC container
	The noVNC console
	Direct shell through the CLI

	Converting OpenVZ to LXC
	Summary

	Chapter 8: Network of Virtual Networks
	Exploring virtual networks
	Physical networks versus virtual networks
	A physical network
	A virtual network

	Networking components in Proxmox
	Virtual Network Interface Cards
	Adding/removing vNIC

	A virtual bridge
	Adding a virtual bridge through the GUI
	Name
	IP information
	Bridge ports
	VLAN-aware

	Adding a virtual bridge through CLI

	Extra bridge options
	bridge_stp
	bridge_fd

	Virtual LAN
	Adding a VLAN

	Network Address Translation/Translator
	Adding NAT/masquerading

	Network bonding
	Adding a bonding interface
	The layer 2 hash policy
	The layer 2+3 hash policy
	The layer 3+4 hash policy

	Multicast
	Configuring multicast on Netgear

	Open vSwitch
	Features of Open vSwitch
	Adding an Open vSwitch bridge
	Adding the Open vSwitch bond
	Adding Open vSwitch IntPort
	CLI for Open vSwitch
	Practicing Open vSwitch
	Configuration requirements
	Solutions

	Sample virtual networks
	Network #1 – Proxmox in its simplest form
	Network #2 – the multi-tenant environment
	Network #3 – academic institution

	A multi-tenant virtual environment
	A multi-tenant network diagram

	Summary

	Chapter 9: The Proxmox VE Firewall
	Exploring the Proxmox VE firewall
	Components of the Proxmox firewall
	Zones
	Security groups
	IPSet
	Rules
	Protocols
	Macros
	The pve-firewall and pvefw-logger services

	Configuration files of a firewall

	Configuring the data center-specific firewall
	Configuring the Datacenter firewall through the GUI
	Creating the Datacenter firewall rules
	Creating the Datacenter IPSet
	Creating aliases

	Configuring the Datacenter firewall through the CLI
	[OPTIONS]
	[ALIASES]
	[IPSET <name>]
	[RULES]
	[group <name>]

	Configuring a host-specific firewall
	Creating host firewall rules
	Options for the host zone firewall
	Enable a firewall
	The SMURFS filter
	The TCP flags filter
	NDP
	nf_conntrack_max
	nf_conntrack_tcp_timeout_established
	log_level_in/out
	tcp_flags_log_level
	smurf_log_level

	Configuring the host firewall through the CLI

	Configuring a VM-specific firewall
	Creating VM firewall rules
	Creating aliases
	Creating IPSets
	Options for a VM zone firewall
	Enable DHCP
	The MAC filter
	Input/output policy

	Configuring a VM-specific firewall through the CLI

	Integrating a Suricata IDS/IPS
	Installing/configuring Suricata
	Limitations of Suricata in Proxmox

	Summary

	Chapter 10: Proxmox High Availability
	Understanding HA
	HA in Proxmox
	How Proxmox HA works

	Requirements for HA setup
	At least three nodes
	Shared storage
	Fencing
	BIOS power-on feature

	Configuring Proxmox HA
	The HA menu
	Status
	The Resources menu

	The Groups menu
	ID
	Node
	The restricted checkbox
	The nofailback checkbox

	The Fencing menu

	Testing Proxmox HA configuration
	The Proxmox HA simulator
	Configuring the Proxmox HA simulator

	Summary

	Chapter 11: Monitoring the Proxmox Cluster
	An introduction to monitoring
	Proxmox built-in monitoring
	Datacenter Status
	Node Status

	Zabbix as a monitoring solution
	Installing Zabbix
	Configuring Zabbix
	Configuring a host to monitor
	Displaying data using a graph
	Configuring the disk health notification
	Installing smart monitor tools
	Configuring the Zabbix agent
	Creating a Zabbix item in the GUI
	Creating a trigger in the GUI
	Creating graphs in the GUI

	Configuring SNMP in Proxmox
	Object Identifiers
	Management Information Base

	Adding an SNMP device in Zabbix
	Monitoring the Ceph cluster with the Proxmox GUI
	Monitoring a Ceph cluster with third-party options
	Summary

	Chapter 12: Proxmox Production-Level Setup
	Defining the production level
	Key components
	Stable and scalable hardware
	Redundancy
	Node level
	Utility level
	Network level
	HVAC level
	Storage level

	Current load versus future growth
	Budget
	Simplicity
	Tracking hardware inventory
	Hardware selection

	Sizing CPU and memory
	Single socket versus multi-socket
	Hyper-threading – enable versus disable
	Start small with VM resources
	Balancing node resources

	Ceph cluster production
	Forget about hardware RAID
	Solid State Drive for Ceph Journal
	Network bandwidth

	Liquid cooling
	Total immersion in oil
	Total immersion in 3M Novec
	Direct contact liquid cooling

	Real-world Proxmox scenarios
	Scenario 1 – an academic institution
	Scenario 2 – multi-tier storage cluster with a Proxmox cluster
	Scenario 3 - Virtual infrastructure for a multi-tenant cloud service provider
	Scenario 4 – nested virtual environment for a software development company
	Scenario 5 – virtual infrastructure for a public library
	Scenario 6 – multi-floor office virtual infrastructure with virtual desktops
	Scenario 7 – virtual infrastructure for the hotel industry
	Scenario 8 – virtual infrastructure for geological survey organization

	Summary

	Chapter 13: Back Up and Restore Virtual Machines
	Proxmox backup options
	A full backup
	Full backup modes
	Snapshot
	Suspend
	Stop

	Backup compression
	None
	LZO
	GZIP

	Snapshots

	Configuring backup storage
	Show VM configuration from backup

	Configuring full backup
	Creating a schedule for backup
	Node
	Storage
	Day of week
	Start Time
	Selection mode
	Send email to
	Email notification
	Compression
	Mode
	Enable

	Creating a manual backup

	Creating snapshots
	Restoring a virtual machine
	Backup/restore through the CLI
	Backup using the CLI
	Restore using the CLI
	Unlocking a VM after a backup error

	Virtual machine replication
	Creating a replication task through the GUI
	Target
	Schedule
	Rate limit (MB/s)
	Enabled

	Creating a replication task through the CLI
	Replication process

	Backup configuration file
	The bwlimit option
	The lockwait option
	The stopwait option
	The stdexcludes option
	The mailto option
	The script option
	The exclude-path option
	The pigz option

	Summary

	Chapter 14: Updating/Upgrading Proxmox
	Introducing Proxmox updates
	Updating Proxmox through the GUI
	Updating Proxmox through the CLI
	Difference between upgrade and dist-upgrade

	Recovering from the grub2 update issue
	Updating after a subscription change
	Rebooting dilemma after Proxmox updates
	Applying update without reboot

	Summary

	Chapter 15: Proxmox Troubleshooting
	Proxmox node issues
	Issue – fresh Proxmox install stuck with /dev to be a fully populated error during node reboot
	Issue – rejoining a node to a Proxmox node with the same old IP address
	Issue – Proxmox installation completed but grub is in an endless loop after reboot
	Issue – LSI MegaRAID 9240-8i/9240-4i causes an error during booting of the Proxmox node
	Downloading and updating the LSI driver
	Updating the Supermicro BIOS

	Issue – the Upgrade button is disabled on the Proxmox GUI, which prevents the node upgrade
	Issue – Proxmox cannot start due to the getpwnam error
	Issue – cannot log in to the GUI as root after reinstalling Proxmox on the same node

	The main cluster issues
	Issue – Proxmox virtual machines are running, but the Proxmox GUI shows that everything is offline
	Issue – kernel panic when disconnecting USB devices, such as a keyboard, mouse, or UPS
	Issue – virtual machines on Proxmox will not shut down if shutdown is initiated from the Proxmox GUI
	Issue – kernel panic with HP NC360T (Intel 82571EB chipset) only in Proxmox VE 3.2
	Issue – the Proxmox cluster is out of quorum and cluster filesystem is in read-only mode
	Issue – VM will not respond to shutdown or restart
	Issue – Proxmox GUI not responding after Firefox update
	Issue – the Proxmox GUI is not showing RRD graphs

	Storage issues
	Issue – deleting a damaged LVM from Proxmox with the error read failed from 0 to 4096
	Issue – Proxmox cannot mount NFS share due to the timing out error
	Issue – how to delete leftover NFS shares in Proxmox or what to do when the NFS stale file handle error occurs?
	Issue – Proxmox issues --mode session exit code 21 errors while trying to access the iSCSI target
	Issue – cannot read an iSCSI target even after it has been deleted from Proxmox storage
	Issue – a Ceph node is removed from the Proxmox cluster, but OSDs still show up in PVE
	Issue – the no such block device error during creation of an OSD through the Proxmox GUI
	Issue – the fstrim command does not trim unused blocks for the Ceph storage
	Issue – the RBD couldn't connect to cluster (500) error when connecting Ceph with Proxmox
	Issue – changing the storage type from IDE to VirtIO after the VM has been set up and the OS has been installed
	Issue – the pveceph configuration not initialized (500) error when you click on the Ceph tab in the Proxmox GUI
	Issue – the CephFS storage disappears after a Proxmox node reboots
	Issue – VM cloning does not parse in the Ceph storage
	Issue – VM disk images stored on ZFS is extremely slow

	Network connectivity issues
	Issue – no connectivity on Realtek RTL8111/8411 rev. 06 network interfaces
	Issue – network performance is slower with the E1000 virtual network interfaces
	Issue – patch port for Open vSwitch in Proxmox not working
	Issue – trying to add a node to a newly created Proxmox cluster when nodes do not form quorum
	Issue – implemented IPv6 but firewall rules do not get applied

	KVM virtual machine issues
	Issue – Windows 7/XP machine converted to Proxmox KVM hangs during boot
	Issue – Windows 7 VM does not reboot, instead it shuts down, requiring a manual boot from Proxmox
	Issue – the qemu-img command does not convert the .vmdk image files created with the .ova template in Proxmox VE 5.0
	Issue – online migration of a virtual machine fails with a failed to sync data error
	Issue – no audio in Windows KVM
	Issue – the VirtIO virtual disk is not available during the Windows Server installation

	LXC container issues
	Issue – a Proxmox node hangs when trying to stop or restart an LXC container
	Issue – the noVNC console only shows a cursor for LXC containers

	Backup/restore issues
	Issue – a Proxmox VM is locked after backup crashes unexpectedly
	Issue – how can Proxmox back up only the primary OS virtual disk instead of all the virtual disks for a VM?
	Issue – backup of virtual machines stops prematurely with an operation not permitted error
	Issue – a backup task takes a very long time to complete, or it crashes when multiple nodes are backing up to the same backup storage
	Issue – backup of virtual machines aborts a backup task prematurely
	Issue – backup storage has a lot of .dat files and .tmp folders using the storage space

	VNC/SPICE console issues
	Issue – the mouse pointer is not shared with SPICE (virt-viewer) on Windows 8 VM
	Issue – remote viewer is unable to connect to a SPICE-enabled virtual machine on the Windows OS

	Firewall issues
	Issue – rules are created and a firewall is enabled for vNIC, but rules do not get applied
	Issue – a firewall is enabled for a VM and the necessary rules are created, but nothing is being filtered for that VM

	Summary

	Chapter 16: Rescuing Proxmox
	Recovering from OS drive failure
	Physical drive failure
	OS data corruption
	Migrating VMs from a faulty node
	Reinstalling Proxmox

	Recovering from a quorum failure
	Recovering from a node failure
	Recovering from a network failure
	Loss of connectivity between Proxmox nodes
	Loss of connectivity between Proxmox nodes and users
	Loss of connectivity between Proxmox and storage nodes

	Recovering from Ceph failure
	Best practices for a healthy Ceph cluster
	Stuck inconsistent PGs in Ceph
	Stuck inactive incomplete PGs in Ceph
	Error while moving a Ceph journal to another drive
	Ceph node running out of resources during recovery

	Summary

	Index

